Skip to main content

Emerging Issues in Pulmonary Infections of Cystic Fibrosis

  • Chapter
Book cover Emerging Issues and Controversies in Infectious Disease

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

  • 787 Accesses

Pulmonary infections are the leading cause of morbidity and mortality in patients with cystic fibrosis. Empiric broad-spectrum antibiotics are often used for prolonged periods and repeatedly for exacerbation of bronchiectasis. Hence, as a consequence this select group of patients has the highest incidence of multi-resistant bacteria causing respiratory colonization or infection second to none. It is estimated that 25–45% of adults with cystic fibrosis are chronically infected with multi-resistant bacteria in their airways.1

Moreover, these bacteria usually cannot be eradicated and persist in the respiratory tract despite cycles of different combination of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehtzin, N., John, M., Irizarry, R., Merlo, C., Diette, G., Boyle, M., (2006), Outcomes of adults with cystic fibrosis infected with antibiotic-resistant Pseudomonas aeruginosa. Respiration 73:27–33.

    Google Scholar 

  2. Boucher, R., (2005), Cystic fibrosis, in: Harrison's Principles of Internal Medicine, 16th Edition, Kasper, D.C., Braunwald, E., Fauci, A.S., Hauser, S.L., Longo, D.L., Jameson, J. L., (eds), McGraw-Hill, New York, pp. 1543–1546.

    Google Scholar 

  3. Brennan, A.L., Geddes, D.M., (2002), Cystic fibrosis. Curr. Opin. Infect. Dis. 15:175–182.

    PubMed  Google Scholar 

  4. Fredericksen, B., Koch, C., Hoiby, N., (1997), Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol. 23:330–335.

    Google Scholar 

  5. Starner, T.D., McCray, P.B., Jr. (2005), Pathogenesis of early lung disease in cystic fibrosis: A window of opportunity to eradicate bacteria. Ann. Intern. Med. 14:816–822.

    Google Scholar 

  6. Li, Z., Kosork, M.R., Farrell, P.M., Laxova, A., West, S.E.H., Green, C.G., Collins, J., Rock, M.J., Splaingord, M.L., (2005), Longitudinal development of mucoid Pseudomonas aerugi- nosa infection and lung disease progression in children with cystic fibrosis. JAMA 293: 581–588.

    CAS  PubMed  Google Scholar 

  7. Goldman, M.J., Anderson, G.M., Stolzenberg, E.D., Kari, U.P., Zasloff, M., Wilson, J.M., (1997), Human beta-defensins is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560.

    CAS  PubMed  Google Scholar 

  8. Smith, J.J., Travis, S.M., Greenberg, E.P., Welsh, M.J., (1996), Cystic fibrosis airway epithe- lia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236.

    CAS  PubMed  Google Scholar 

  9. Matsui, H., Grubb, B.R., Torran, R., Randell, S.H., Gatzy, J.T., Davis, C.W., Boucher, R.C., (1998), Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015.

    CAS  PubMed  Google Scholar 

  10. Poschet, J.F., Boucher, J.C., Tatterson, L., Skidmore, J., VanDyke, R.W., Deretic, V., (2001), Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proc. Natl. Acad. Sci USA 98:13972–13977.

    CAS  PubMed  Google Scholar 

  11. Bryan, R., Kube, D., Perez, A., Davis, P., Prince, A., (1998), Overproduction of the CFTR, R domain leads to increased levels of asialoGMI, and increased Pseudomonas aeruginosa binding by epithelial cells. Am. J. Respir. Cell Mol. Biol. 19:269–277.

    CAS  PubMed  Google Scholar 

  12. De Bentzmann, S., Roger, P., Dupuit, F., Bajolet-Laudinat, O., Fuchey, C., Plotkowski, M.C., Puchelle, E., (1996), Asialo-GMI is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Am. J. Respir. Cell Mol. Biol. 64:1582–1588.

    Google Scholar 

  13. Schroeder, T.H., Reiniger, N., Meluleni, G., Grout, M., Colemon, F.T., Pier, G.B., (2001), Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. J. Immunol. 166:7410–7418.

    CAS  PubMed  Google Scholar 

  14. Meng, O., Springall, D.R., Bishop, A.E., (1998), Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J. Pathol. 164:323–331.

    Google Scholar 

  15. Sturgess, J., Imrie, J., (1982), Quantitative evaluation of the development of tracheal submu- cosal glands in infants with cystic fibrosis and control infants. Am. J. Pathol. 106:303–311.

    CAS  PubMed  Google Scholar 

  16. Inglis, S.K., Wilson, S.M., (2005), Cystic fibrosis and airway submucosal glands. Pediatr. Pulmon. 40:279–284.

    CAS  Google Scholar 

  17. Aichele, D., Schnare, M., Saake, M., Rollinghoff, M., Gessner, A., (2006), Expression and antimicrobial function of bactericidal permeability increasing protein in cystic fibrosis patients. Infect. Immun. 74:4708–4714.

    CAS  PubMed  Google Scholar 

  18. Miller, M.B., Gilligan, P.H., (2003), Laboratory aspects of management of chronic pulmonary infections in patients with cystic fibrosis. J. Clin. Microbiol. 41:4009–4015.

    PubMed  Google Scholar 

  19. Cystic Fibrosis Foundation, (2002), Patient registry 2001 annual report. Cystic Fibrosis Foundation, Washington, DC.

    Google Scholar 

  20. Jarry, T.M., Cheung, A.L., (2006), Staphylococcus aureus escapes more efficiently from the phagosome of a cystic fibrosis bronchial epithelial cell line than from it's normal counterpart.Infect. Immun. 74:2565–2577.

    Google Scholar 

  21. Lyczak, J.B., Cannon, C.C., Pier, G.B., (2002), Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15:194–222.

    CAS  PubMed  Google Scholar 

  22. Thomas, S.R., Ray, A., Hodson, M.E., Pitt, T.L., (2000), Increased sputum amino-acid concentration and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 55:795–797.

    CAS  PubMed  Google Scholar 

  23. Costerton, W., Veeh, R., Shirtliff, M., Paomore, M., Post, C., Ehrlich, G., (2003), The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest. 112:1466–1477.

    CAS  PubMed  Google Scholar 

  24. Hoiby, N., (2002), Understanding bacterial biofilms in patients with cystic fibrosis: Current and innovative approaches to potential therapies. J. Cystic Fibrosis. 1:249–254.

    Google Scholar 

  25. Gibson, R.L., Burns, J.L., Ramsey, B.W., (2003), Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168:918–951.

    PubMed  Google Scholar 

  26. Oliver, A., Canton, R., Campo, P., Baquero, F., Blazquez, J., (2000), High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–1254.

    CAS  PubMed  Google Scholar 

  27. Soong, G., Muir, A., Gomez, M.I., Waks, J., Reddy, B., Planet, P., Singh, P.K., Kanoko, Y., Wolfgang, M.C., Hsiao, Y.S., Tony, L., Prince, A., (2006), Bacterial neuramidases faciliatates mucosal infection by participating in biofilm production. J. Clin. Invest. 116:2297–2305.

    CAS  PubMed  Google Scholar 

  28. Van Alst, N.E., Picardo, K.F., Iglewski, B.H., Haidaris, C.G., (2007) Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect. Immun. 75:3780–3790.

    PubMed  Google Scholar 

  29. MacEachran, D.P., YE, S., Bomberger, J.M., Hogan, D.A., Swiatecka-Urban, A., Stanton, B. A., O'Toole, G.A., (2007), The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the Cystic Fibrosis Trans-membrane Conductance Regulator.Infect. Immune 75:3902–3912.

    CAS  Google Scholar 

  30. Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Flemig, P., Levison, H., (1984), Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr. 104: 206–210.

    CAS  PubMed  Google Scholar 

  31. Heath, D.G., Hohreker, K., Carriker, C., Smith, K., Routh, J., LiPuma, J.J., Aris, R.M., Weber,, D., Gilligan, P.H., (2002), Six-year molecular analysis of Burkholderia cepacia complex isolates among cystic fibrosis patients at a referral center for lung transplantation. J. Clin. Microbiol. 40:1188–1193.

    CAS  PubMed  Google Scholar 

  32. Chen, J.S., Witzmann, K.A., Spilker, T., Fink, R.J., LiPuma, J.J., (2001), Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J. Pediatr. 139: 643–641.

    CAS  PubMed  Google Scholar 

  33. Chaparro, C., Maurer, J., Gutierrez, C., Krajden, M., Chan, C., Winton, T., Keshavjce, S., Scavuzzo, M., Tullis, E., Hutcheon, M., Kesten, S.E., (2001), Infection with Burkholderia cepacia complex isolates among cystic fibrosis: outcome following lung transplantation. Am. Rev. Respir. Crit. Care Med. 163:43–48.

    CAS  Google Scholar 

  34. Aris, R.M., Routh, J.C., LiPuma, J.J., Heath, D.G., Gilligan, P.H., (2001), Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex. Survival linked to genomovar type. Am. J. Respir. Crit. Care Med. 164:2102–2106.

    CAS  PubMed  Google Scholar 

  35. Henry, D., Campbell, M., Mc Gimpsey, C., Clarke, A., Louden, L., Burns, J.L., Roe, M.H., Vandamme, P, Speert, D., (1999), Comparison of isolation media for recovery of Burkhol- deria cepacia complex from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. 37:1004–1007.

    CAS  PubMed  Google Scholar 

  36. Sun, L., Jiang, R.Z., Stainbach, S., Holmes, A., Campanelli, C., Forstner, J., Sajjan, U., Tan, Y., Riley, M., Goldstein, R., (1995), The emergence of a highly transmissible lineage of Cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat. Med. 7:626–627.

    Google Scholar 

  37. Graff, G.R., Burns, J.L., (2002), Factor affecting the incidence of Stentotrophomonas mal- tophilia isolation in cystic fibrosis. Chest 121:1754–1760.

    PubMed  Google Scholar 

  38. Saiman, L., Chen, Y., Tabibi, S., San Gibriel, R., Zhou, J., Lui, Z., Lai, L., Whittier., S., (2001), Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J. Clin. Microbiol. 39:3942–3945.

    CAS  PubMed  Google Scholar 

  39. Goss, C.H., Otto, K.L., AiKen, M.L., Rubenfeld, G.D., (2002), Detecting Stentotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am. J. Respir. Crit Care Med. 166:356–361.

    PubMed  Google Scholar 

  40. Tan, K.K., Conway, S.P., Brownlee, K.G., Etherington, C., Peckham, G., (2002), Alcaligenesinfection in cystic fibrosis. Pediatr. Pulmonol. 34:101–104.

    PubMed  Google Scholar 

  41. McMenamin, J.D., Zaccone, T.M., Coenye, T., Vandamme, P., LiPuma, (2000), Misidentifi- cation of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates. Chest 177:1661–1665.

    Google Scholar 

  42. Krzewinski, J.W., Nguyen: C.D., Foster, J.M., Burns, J.L., (2001), Use of random amplified polymorphic DNA PCR to examine epidemiology of Stentotrophomonas maltophilia and Achromobactor (Alcaligenes) xylosoxidans from patients with cystic fibrosis. J. Clin. Micro- biol. 39:3597–3602.

    CAS  Google Scholar 

  43. Kilby, J.M., Gilligan, P.H., Yankaskas, J.R., Highsmith. W.E. Jr., Edwards, L.J., Knowles, M. R., (1992), Nontuberculous mycobacteria in adult patients with cystic fibrosis. Chest 102: 70–75.

    CAS  PubMed  Google Scholar 

  44. Oliver, K.N., Weber, D.J., Wallace, R.J. Jr., Faiz, A.R., Lee, J.H., Zhang, Y., Brown-Elliot, B. A., Handler, A., Wilson, R.W., Schechter, M.S., Edwards, L.J., Chakraborti, S., Knowles, M. R., (2003), Nontuberculous mycobacteria I: multicenter prevalence study in cystic fibrosis. Am. J. Respir. Crit. Care Med. 167:828–834.

    Google Scholar 

  45. Sermet-Gaudelus, I., Le Bourgeois, M., Pierre-Audigier, C., Offredo, C., Guillemot, D., Halley, S., Akoua-Koffi, C., Vincent, V., Sivadon-Tardy, V., Ferroni, A., Berche, P., Schein- mann, P., Lenoir, G., Gaillard, J.-L., (2003), Mycobacterium abscessus and children with cystic fibrosis. Emerg. Infect. Dis. 9:1587–1591.

    PubMed  Google Scholar 

  46. Pierre-Audigier, V., Ferroni, A., Sermet – Gaudelius, I., Le Bourgeois, M., Offredo, C., Vu- Tien, H., Fauroux, B., Mariani, P., Munck, A., Binger, E., Guillemot, D., Quesne, G., Vincent, V., Berche, P., Gaillard, J.L., (2005), Age-related prevalence and distribution of nontubercu- lous mycobacterial species among patients with cystic fibrosis. J. Clin. Microbiol. 43: 3467–3470.

    PubMed  Google Scholar 

  47. Olivier, K.N., Weber, D.J., Lee, J.H., Handler, A., Tuder, G, Molina, P.L., Tomashefski, J., Knowles, M.R., (2003), Nontuberculous mycobacteria: II. Nested-cohort study of impact on cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 167:833–840.

    Google Scholar 

  48. Ferroni, A., Vu-Thien, H., Lanotte, P., Le Bourgeois, M., Sermet-Gaudelus, I., Fauroux, B., Marchand, S., Varaigne, F., Berche, P., Gaillard, J.L., Offredo, C., (2006), Value of Chorhex- idine decontamination method for recovery of nontuberculous mycobacteria from sputum samples of patients with cystic fibrosis. J. Clin. Microbiol. 44:2237–2239.

    PubMed  Google Scholar 

  49. Bakore, N., Rickerts, V., Bargon, J., Just-Nubbling, G., (2003), Prevalance of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses 46:19–23.

    Google Scholar 

  50. Stevens, D.A., Moss, R.B., Kurup, V.P., Knutsen, A.P., Greenberger, P., Judson, M.A, Denning, D.W., Crameri, R., Brody, A.S., Light, M., Skove, M., Maish, W., Mastella, G., and Participants in the Cystic Fibrosis Foundation Consensus Conference, (2003), Allergic bronchopulmonary aspergillosis in cystic fibrosis state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin. Infect. Dis. 37(Suppl. 3):S225–S264.

    PubMed  Google Scholar 

  51. Taccetti, G., Procopio, E., Morianelti, C., Campama, S., (2000), Allergic bronchopulmonary aspergillosis in Italian cystic fibrosis patients: prevalence and percentage of positive tests in the employed diagnostic criteria. Eur. J. Epidemiol. 16:837–842.

    CAS  PubMed  Google Scholar 

  52. Mastella, G., Rainisio, M., Harmes, H.K., Hodson, M., Koch, C., Navarro, J., Strandvik, B., McKenzie, S.G., (2001), Epidemiologic Registry of Cystic Fibrosis: allergic bronchopulmon- ary aspergillosis in cystic fibrosis, a European epidemiologic study. Eur. Respir. J. 16: 464–471.

    Google Scholar 

  53. Cimon, B., Carrere, J., Vinatier, J.F., Chazalette, J.P., Chabasse, D., Bouchara, J.P., (2001), Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur. J. Clin. Microbiol Infect. Dis. 19:53–56.

    Google Scholar 

  54. Diemert, D., Kunimoto, D., Sard, C., Rennie, R., (2001), Sputum isolation of Wangiella dematitidis in patients with cystic fibrosis. Scand. J. Infect. Dis. 33:777–779.

    CAS  PubMed  Google Scholar 

  55. Cimon, B., Carrere, J., Chazalette, J.P., Vinatier, J.F., Chabasse, D., Bouchara, J.P., (1999), Chronic airway colonization by Penicillium emesonii in a patient with cystic fibrosis. Med. Mycol. 37:291–293.

    CAS  PubMed  Google Scholar 

  56. Prober, C.G., (1991), The impact of respiratory viral infections in patients with cystic fibrosis. Clin. Rev. Allergy 9:87–102.

    CAS  PubMed  Google Scholar 

  57. Hiatt, P.W., Grace, S.C., Kozinetz, C.A., Raboudi, S.H., Treece, D.G., Taber, L.H., Piedra, P. A., (1999), Effects of viral lower respiratory tract infection on lung function in infants with cystic fibrosis. Pediatr. 103:619–626.

    CAS  Google Scholar 

  58. Thomassen, M.J., Demko, C.A., Doershuk, C., (1987), Cystic Fibrosis: a review of pulmonary infections and interventions. Pediatr. Pulmonol. 3:334–351.

    CAS  PubMed  Google Scholar 

  59. Ratjen. F., Comes, G., Paul, K., Posselt, H.G., Wagner, T.O., Harmes, K., (2001), German Board of the European Registry for Cystic Fibrosis (ERCF): effect of continuous antistaphy- lococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr. Pulmonol. 31:13–16.

    CAS  PubMed  Google Scholar 

  60. Stutman, H.R., Lieberman, J.M., Nussbaum, E., Marks, M.I., (2002), Antibiotic prophylaxis in infants and children with cystic fibrosis: a randomized controlled trial. J. Pediatr. 140: 299–305.

    CAS  PubMed  Google Scholar 

  61. Valerius, N.H., Koch, C., Hoiby, N., (1991), Prevention of chronic Pseudomonas aeruginosa colonization in cystic fibrosis by early treatment. Lancet 338:725–726.

    CAS  PubMed  Google Scholar 

  62. Burns, J.L., Gibson, R.L., McNamara, S., Yim, D., Emerson, J., Rosenfeld, M., Hiatt, P., McCoy, K., Castile, R., Smith, A.L., Ramsey, B.W., (2001), Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis. 183:444–452.

    CAS  PubMed  Google Scholar 

  63. Munck, A., Bonacorsi, S., Mariani-Kurkdijian, P., Lebourgeois, M., Gérardin, M., Brahimi, N., Navarro, J., Bingen, E., (2001), Genotype characterization of Pseudomonas aeruginosa strains recovered from patients with cystic fibrosis after initial and subsequent colonization. Pediatr. Pulmonol. 32:288–292.

    CAS  PubMed  Google Scholar 

  64. Gibson, R.L., Emerson, J., McNamara, S., Burns, J.L., Rosenfeld, M., Yunker, A., Hamblett, N., Accurso, F., Dovey, M., Hiatt, P., Korstan, M.W., Moss, R., Retsch-Bogert, G, Wagener, J., Waltz, D., Wilmott, R., Zeitlin, P.L., Ramsey, B,: Cystic Fibrosis Therapeutic Development Network Study Group, (2003), Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 167:841–849.

    PubMed  Google Scholar 

  65. Frederiksen, H.K., Norregaard, L., Gotzche, P.C., Pressler, T., Koch, C., Hoiby, N., (1999), Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974–1995). Pediatr Pulmonol. 28:159–166.

    CAS  PubMed  Google Scholar 

  66. Johansen, H.K., Norregaard, L., Gotzche, P.C., Presster, T., Koch, C., Hoiby, N., (2004), Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: a marker of therapeutic success? A 30year cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infection. Pediatr. Pumonol. 37:427–432.

    Google Scholar 

  67. Hoiby, N., Frederiksen, B., Pressler, T., (2005), Eradication of early Pseudomonas aeruginosa infection. J. Cyst. Fibrosis. 4 (Suppl. 2):49–54.

    CAS  Google Scholar 

  68. Armstrong, D.S., Grimwood, K., Carlin, J.B., Carzino, R., Gutierrez, J.P., Hull, J., Olinsky, A., Phelan, E.M., Robertson, C.F., Phelan, P.D., (1997), Lower airway inflammation in infants and young children with cystic fibrosis. Am. J. Respir. Crit. Care. 156:1197–11204.

    CAS  Google Scholar 

  69. Chiron-Corporation. Chiron Announces Launch of ELITE Trial. Accessed at http: 11phx. corporate-ir/phoenix:zhtml?C=105850&p=irol-news Article&ID=552967&highlight=on18October2005.

  70. Early Pseudomonas Infection Control (EPIC) Trial. National Heart, Lung and Blood Institute (NHLBI). Accessed at www.clinicaltrials.gov./ct/gui/show/NCT00097773.

  71. Illowite, J.S., Gorvoy, J.D., Smaldowe, G.C., (1987), Quantitative deposition of aerolized gentamicin in cystic fibrosis. Am. Rev. Respir. Dis. 136:1445–1449.

    Google Scholar 

  72. Geller, D.E., Pitlick, W.H., Nardella, P.A., Tracewell, W.G., Ramsey, B.W., (2002), Pharma- mcokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest 122: 219–226.

    CAS  PubMed  Google Scholar 

  73. Ramsey, B.W., Pepe, M.S., Quan, J.M., Otto, K.L., Montgomery, A.B., Williams-Warren, J.,Vansiljev, K.M., Borowitz, D., Bowman, C.M., Marshall, B.C., Marshall, S., Smith, A.L., (1999), Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N. Engl. J. Med. 340:23–30.

    CAS  PubMed  Google Scholar 

  74. Moss, R.B., (2001), Administration of aerolized antibiotic in cystic fibrosis patients. Chest 120(Suppl. 3):107S–113S.

    CAS  PubMed  Google Scholar 

  75. Cystic Fibrosis Foundation Patient Registry, (2002), 2001 Annual Data Report to the Center Directors. Cystic Fibrosis Foundation, Bethesda, MD.

    Google Scholar 

  76. Cystic Fibrosis Foundation Patient Registry, (2005), 2004 Annual Data Report to the Center Directors. Cystic Fibrosis Foundation, Bethesda, MD.

    Google Scholar 

  77. Littlewood, J.M., Mitter, M.G., Ghoneim, A.T., Ramsden, C.H., (1985), Nebulized colomycin for early Pseudomonas colonization in cystic fibrosis. Lancet 1:865.

    CAS  PubMed  Google Scholar 

  78. Hodson, M.E., Gallagher, C.G., Govan, J.R., (2002), A randomized trial of nebulized tobra- mycin or colistin in cystic fibrosis. Eur. Respir. J. 20:658–664.

    CAS  PubMed  Google Scholar 

  79. Cunningham, S., Prasad, A., Collyer, L., Carr, S., Lynn, I.B., Wallis, C., (2001), Broncho- constriction following nebulized colistin in cystic fibrosis. Arch. Dis. Child. 84:432–433.

    CAS  PubMed  Google Scholar 

  80. Fernandez, J.D., Santiago, R.T., Matacon, M.P., Mayo, R.C., Sańchez, G.T., (1994), Inhaled aztreonam therapy in patients with cystic fibrosis colonized with Pseudomonas aeruginosa. An. Esp. Pediatr. 40:185–188.

    Google Scholar 

  81. Cystic Fibrosis Foundation Clinical Trials & Studies, (2006), Anti-Infection therapies. Cystic Fibrosis Foundation, Besthesda, MD, http:/www.cff.org/research/clinical-trials/ongoing- trials/anti-infection/#IV_VS/Inhaled-Antibiotics.

  82. Reed, M.D., Stern, R.C., Myers, C.M., Yamashita, T.S., Blumer, J.L., (1988), Lack of unique ciprofloxacin pharmacokinetic characteristics in patients with cystic fibrosis. J. Clin. Pharmacol. 28:691–699.

    CAS  PubMed  Google Scholar 

  83. Ball, P., (1990), Emergent resistance to ciprofloxacin amongst Pseudomonas aeruginosa and Staphylococcus aureus: clinical significance and therapeutic approaches. J. Antimicrob. Che- mother 26(Suppl. F):165–179.

    Google Scholar 

  84. Chysky, V., Kapila, K., Hullman, R., Arcieri, G., Schacht, P., Echols, R., (1991), Safety of ciprofloxacin in children: worldwide clinical experience based on compassionate use: emphasis on joint evaluation. Infections 19:289–296.

    CAS  Google Scholar 

  85. Jaffe, A., Bush, A., (2001), Antiinflammatory effects of macrolides in lung disease. Pediatr. Pulmonol. 31:464–473.

    CAS  PubMed  Google Scholar 

  86. Tateda, K., Ishii, Y., Matsumoto, T., Furuya, N., Nagasluma, M., Matsunaga, T., Ohno, A., Miyazaki, S., Yomaguchi, K., (1996), Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Antimicrob. Agents Chemother. 40: 2271–2275.

    CAS  PubMed  Google Scholar 

  87. Wozniak, D.J., Keyser, R., (2004), Effects of subinhibitory concentration of macrolide antibiotics on Pseudomonas aeruginosa. Chest 125(Suppl. 2):62S–69S.

    CAS  PubMed  Google Scholar 

  88. Labro, M.T., (1998), Antiinflammatory effects of macrolides: a new therapeutic potential? J. Antimicrob. Chemother. 41:37–46.

    CAS  PubMed  Google Scholar 

  89. Equi, A., Balfour-Lynn, I.M., Bush, A., Rosenthal, M., (2002), Long term azithromycin in children with cystic fibrosis: a randomized, placebo-controlled crossover trial. Lancet 360:978–984.

    CAS  PubMed  Google Scholar 

  90. Wolter, J., Seeney, S, Bell, S., Bowler, S., Masel, P., McCormach, J., (2002), Effect of long nterm treatment with azithromycin on disease parameters in cystic fibrosis: a randomized trial. Thorax 57:212–216.

    CAS  PubMed  Google Scholar 

  91. Saiman, L., Marshall, B.C., Mayer-Hamblatt, N., Burns, J.L., Quittner, A.L., Cibene, D.A., Coquillette, S., Fieberg, A.Y., Accurso, F.J., Campbell, P.W.3rd, (2003), The Macrolide Study Group: a multicenter, randomized, placebo controlled, double-blind trial of azithro- mycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa. JAMA 290:1749–1756.

    CAS  PubMed  Google Scholar 

  92. Elphick, H.E., Tan, A., (2006), Single versus combination therapy for people with cystic fibrosis. Cochrane Database of Systematic Reviews; accessed at: 00075320–100000000– 01458.

    Google Scholar 

  93. Aaron, S.D., Vandemheen, K.L., Ferris, W., Fergusson, D., Tullis, E., Haase, D., Berthiaume, Y., Brown, N., Wilcox, P., Yizghatlion, V., Bye, P., Bell, S., Chan, F., Rose, B., Jeanneret, A., Stephenson, A., Noseworthy, M., Freitag, A., Paterson, N., Doucette, S., Harbour, C., Ruel, M., MacDonald, N., (2005), Combination antibiotic susceptibility testing to treat exacerbation of cystic fibrosis associated with multiresistant bacteria: a randomized, double-blind controlled trial. Lancet 366:463–471.

    CAS  PubMed  Google Scholar 

  94. Etherington, C., Hall, M., Conway, S., Peckham, D., Denton, M., (2008), Clinical impact of reducing routine susceptibility testing in chronic Pseudomonas aeruginosa infections in cystic fibrosis. J. Antimicrob. Chemother. 61:425–427.

    CAS  PubMed  Google Scholar 

  95. Lechtzin, N., John, M., Irizarry, R., Merlo, C., Diette, G.B., Boyle, M.P., (2006), Outcomes of adults with cystic fibrosis infected with antibiotic-resistant Pseudomonas aeruginosa. Respiration 73:27–33.

    PubMed  Google Scholar 

  96. Burkhardt, O., Lehmann, C., Madabushi, R., Kumar, V., Derendorf, H., Welte, T., (2006), Once-daily tobramycin in cystic fibrosis: better for clinical outcome than thrice daily but more resistance development. J. Antimicrob. Chemother. 58:822–829.

    CAS  PubMed  Google Scholar 

  97. Lewin, C., Doherty, C., Gowan, J., (1993), Invitro activities of meropenem, PD127391, PD131628, ceftazidime, chloramphenical, co-trimoxazole, and ciprofloxacin against Pseu- domonas cepacia. Antimicrob. Agents. Chemother. 37:123–125.

    CAS  PubMed  Google Scholar 

  98. Burns, J., Saiman, L., (1999), Burkholderia cepacia infection in cystic fibrosis. Pediatr. Infect. Dis. J. 18:123–125.

    Google Scholar 

  99. Vartivarian, S., Anaissie, E., Bodey, G., Spingg, H., Rolston, K., (1994), A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents; implications for therapy. Antimicrob. Agents Chemother. 38:624–627.

    CAS  PubMed  Google Scholar 

  100. Saiman, L., Chen, Y., Tabibi, S., San Gabriel, P., Zhou, J., Liu, Z., Lai, L., Whittier, S., (2001), Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J. Clin. Microbiol 39:3942–3945.

    CAS  PubMed  Google Scholar 

  101. Maiz-Carro, L., Navas-Elorza, E., (2002), Nontubercilous mycobacterial pulmonary infection in patients with cystic fibrosis. Am. J. Resp. Med. 1:107–117.

    Google Scholar 

  102. Petrini, B, (2006), Mycobacterium abscessus: an emerging-rapid-growing potential pathogen. APMIS 114:319–328.

    CAS  PubMed  Google Scholar 

  103. Langford, D.T., Hiller, J., (1984), Prospective, controlled study of a polyvalent Pseudomonas vaccine in cystic fibrosis: three year results. Arch. Dis. Child 59:1131–1134.

    CAS  PubMed  Google Scholar 

  104. Lang, A.B., Schaad, U.B., Rudeberg, A., Wedgwood, J., Que J.U., Furer, E., Cryz, S.J., Jr., (1995), Effect of high-affinity anti-Pseudomonas aeruginosa lypopolysaccharide antibodies induced by immunization on the rate of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J. Pediatr. 127:711–717.

    CAS  PubMed  Google Scholar 

  105. Doring G, Dorner, F., (1997), A multicenter vaccine trial using the Pseudomonas aeruginosa flagella vaccine immunization in patients with cystic fibrosis. Behring Inst. Mitteilungen 98:338–344.

    CAS  Google Scholar 

  106. Wark, P.A.B., McDonald, V., Jones, A.P., (2006), Nebulized hypertonic saline for cystic fibrosis. Cochrane Database of Systematic Review. Access: 00075320–100000000–00452.

    Google Scholar 

  107. Donaldson, S.H., Bennett, W.D., Zeman, K.L., Knowles, M.R., Tarran, R., Boucher, R.C., (2006), Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N. Engl. J. Med. 354:241–250.

    CAS  PubMed  Google Scholar 

  108. Elkins, M.R., Robinson, M., Rose, B.R., Harbour, C., Moriarty, C.P., Marks, G.B., Belou- sova, E.G., Xuan, W., Bye, P.T.P, for the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group, (2006), A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis N. Engl. J. Med. 354:229–240.

    CAS  PubMed  Google Scholar 

  109. Ratjen, F., (2006), Restoring airway surface liquid in cystic fibrosis. (Editorial), N. Engl. J. Med. 354:291–293.

    CAS  PubMed  Google Scholar 

  110. Fuchs H.J., Borowitz, D.S., Christiansen, D.H., Morris, E.M., Nash, M.L., Ramsey, B.W.,m Rosenstein, B.J., Smith, A.L., Wohl, M.E., (1994), The Pulmozyme Study Group: Effect of aerolized recombinant human DNASE on exacerbations of respiratory symptoms and pulmonary function in patients with cystic fibrosis. N. Engl. J. Med. 331:637–642.

    CAS  PubMed  Google Scholar 

  111. Quan, J.M., Tiddens, H.A., Sy, J.P., McKenzie, S.G., Montgomery, M.D., Robinson, P.J., Wohl, M.E., Konstan, M.-W., (2001), The Pulmozyme Early Intervention Trial Study Group: a two year randomized, placebo-controlled trail of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities. J. Pediatr. 139:813–820.

    CAS  PubMed  Google Scholar 

  112. Jones, A.P., Wallis, C.E., Kearney, C.E., Kearney, C.E., (2006), Recombinant human deoxyribonuclease for cystic fibrosis. Cochrane Database of Systematic Reviews. Access no: 00075320–100000000–00909.

    Google Scholar 

  113. Suri, R., Metcalf, C., Lees, B., Grieve, R., Flather, M., Normand, C., Thompson, S., Bush, A., Wallis, C., (2001), Comparison of hypertonic saline and alternate-day or daily recombinant human deoxy-ribonuclease in children with cystic fibrosis: a randomized trial. Lancet 358:1316–1321.

    CAS  PubMed  Google Scholar 

  114. Korstan, M.W., Davis, P.B., (2002), Pharmacological approaches for discovery and development of new anti-inflammatory agents for the treatment of cystic fibrosis. Adv. Drug Deliv. Rev. 54:1409–1423.

    Google Scholar 

  115. Lands, L.C., Desateux, C., Crighton, A., (2006), Oral non-steroidal anti-inflammatory drug therapy for cystic fibrosis. Cochrane Database Systematic Reviews. Access no: 00075320– 100000000–003494.

    Google Scholar 

  116. Rich, D.P., Anderson, M.P., Gregory, R.J., Chery, S.H., Paul, S., Jefferson, D.M., McCann, J. D., Klirger, K.W., Smith, A.E., Welsh, M.J., (1990), Expression of cystic fibrosis transmem- brane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347:358–363.

    CAS  PubMed  Google Scholar 

  117. Cystic Fibrisis Foundation, (2004), Annual Report: Research. Cystic Fibrosis Foundation, Bethesda, MD access: no:http://www.cff.org/uploadedfiles/publications/files/2004Annual- ReportFinal.pdf.

  118. Borghouthi, S., Guerdoud, L.M., Speert, D.P., (1996), Inhibition by dextran of Pseudomonas aeruginosa adherence to epithelial cells: Am. J. Respir. Crit. Care Med. 154:1788–1793.

    Google Scholar 

  119. Chiu, C.H., Wong, S., Hancock, R.E., Speert, D.P., (2001), Adherence of Burkholderia cepacia to respiratory tract epithelial cells and inhibition with dextrans. Microbiol. 147:2651–2658.

    CAS  Google Scholar 

  120. Bryan, R., Feldman, M., Jawetz, S.C., Rajan, S., DiMargo Tang, H.B., Scheffler, L., Speert, D.P., Prince, A., (1999), The effects of aerolized dextran in a mouse model of Pseudomonas aeruginosa pulmonary infection. J. Infect. Dis. 179:1449–1458.

    CAS  PubMed  Google Scholar 

  121. Feng, W., Garrett, H., Speert, D.P., King, M., (1998), Improved clearability of cystic fibrosis sputum with dextran treatment in vitro. Am. J. Respir. Care Med. 184:29–32.

    Google Scholar 

  122. Cole, A.M., Liao, H., Stuchlik, O., Tilan, J., Pohl, J., Ganz, T., (2002), Cationic polypeptide are required for antibacterial activity of human airway fluid. J. Immunol. 169:6985–6991.

    CAS  PubMed  Google Scholar 

  123. Goldman, M.J., Anderson, G.M., Stolzenberg, E.D., Kari, U.P., Zasloff, M., Wilson, J.M., (1997), Human beta-defensin-1 is a salt-sensitive antibiotic that is inactivated in cystic fibrosis. Cell 88:553–560.

    CAS  PubMed  Google Scholar 

  124. Ramsey, B, Rodman, D., Redman, R., Haeslsen, M., Johnson, C., Hamblett, N., Fugii, C., Loury, D., (2001), Phase I safety and tolerability study of ascending multiple doses of aerolized isegaran HCL solution (1B-367) in adults with cystic fibrosis. Pediatr. Pulmonol. 32:A263.

    Google Scholar 

  125. Ganz, T., (2001), Fatal attraction evaded: how pathogenic bacteria resist cationic polypep- tides. J. Exp. Med. 193:F31–F34.

    CAS  PubMed  Google Scholar 

  126. Hoffman, N., Lee, B., Rasmussen, T.B., Song, Z., Johansen, H.K., Givskow, M., Hoiby, N., (2007), Azithromycin block quorum sensing and alginate polymer formation and increases sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in CFTR(−/−) mice. Antimicrob. Agents Chemother. 51:3677–3687.

    Google Scholar 

  127. Overhage, J., Campisano, A., Bains, M., Torfs, ECW, Rehm, BHA, Hancock, REW, (2008), Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 76:4176–4182.

    CAS  PubMed  Google Scholar 

  128. van der Plas, M.J., Jukema, G.N., Wai, S.W., Dogterom-Ballering, H.C., Lagendijk, E.L., van Gulpen, C., van Dissel, J.T., Bloemberg, G.V., Nibbesring, P.H., (2008), Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 61:117–122.

    PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Emerging Issues in Pulmonary Infections of Cystic Fibrosis. In: Fong, I.W. (eds) Emerging Issues and Controversies in Infectious Disease. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84841-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84841-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-84840-2

  • Online ISBN: 978-0-387-84841-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics