Advertisement

Mitochondrial Tumor Suppressors

  • Bora E. Baysal
Chapter

Introduction

Cancer cells have an energy metabolism that is distinct from normal cells in that they preferentially use aerobic glycolysis (Gatenby and Gillies2004). This feature of cancer cells were first described by Warburg, who demonstrated that although normal cells use glycolysis under hypoxia (low oxygen tension) to generate energy, cancer cells use glycolysis even when oxygen is available (Warburg1956). Aerobic glycolysis is thought to be one of the hallmarks of aggressive cancer (Gatenby and Gillies2004). Whether transition to aerobic glycolysis is a cause or consequence of the neoplastic transformation is unclear. In other terms, it is unknown whether the transition to aerobic glycolysis occursafter the crucial molecular steps of tumorigenesis take place (i.e., a tumor promoter role) or it is a mandatory proximal step that has to occurbeforetumorigenesis (i.e., a tumor initiator role). Recent studies suggest that molecular bases of the Warburg effect are caused by multiple...

Keywords

Carotid Body Flavin Adenine Dinucleotide Urea Cycle Uterine Leiomyomas Fumarate Hydratase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Author’s work is supported by an NIH grant R01CA112364.

References

  1. Alam, N. A., Barclay, E., Rowan, A. J., Tyrer, J. P., Calonje, E., Manek, S., Kelsell, D., Leigh, I., Olpin, S., and Tomlinson, I. P. 2005. Clinical features of multiple cutaneous and uterine leiomyomatosis: An underdiagnosed tumor syndrome. Arch. Dermatol. 141: 199–206.CrossRefPubMedGoogle Scholar
  2. Amar, L., Bertherat, J., Baudin, E., Ajzenberg, C., Bressac-de Paillerets, B., Chabre, O., Chamontin, B., Delemer, B., Giraud, S., Murat, A., Niccoli-Sire, P., Richard, S., Rohmer, V., Sadoul, J. L., Strompf, L., Schlumberger, M., Bertagna, X., Plouin, P. F., Jeunemaitre, X., and Gimenez-Roqueplo, A. P. 2005. Genetic testing in pheochromocytoma or functional paraganglioma. J. Clin. Oncol. 23: 8812–8818.CrossRefPubMedGoogle Scholar
  3. Arias-Stella, J. and Valcarcel, J. 1976. Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum. Pathol. 7: 361–373.CrossRefPubMedGoogle Scholar
  4. Astrom, K., Cohen, J. E., Willett-Brozick, J. E., Aston, C. E., and Baysal, B. E. 2003. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: Evidence for an oxygen-sensing defect. Hum. Genet. 113: 228–237.CrossRefPubMedGoogle Scholar
  5. Astuti, D., Latif, F., Dallol, A., Dahia, P. L., Douglas, F., George, E., Skoldberg, F., Husebye, E. S., Eng, C., and Maher, E. R. 2001. Gene mutations in the succinate dehydrogenase subunitSDHB. cause susceptibility to familial pheochromocytoma and to familial paraganglioma Am. J. Hum. Genet. 69: 49–54.CrossRefPubMedGoogle Scholar
  6. Barker, K. T., Bevan, S., Wang, R., Lu, Y. J., Flanagan, A. M., Bridge, J. A., Fisher, C., Finlayson, C. J., Shipley, J., and Houlston, R. S. 2002. Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas. Br. J. Cancer 87: 446–448.CrossRefPubMedGoogle Scholar
  7. Bayley, J. P., Devilee, P., and Taschner, P. E. 2005. The SDH mutation database: An online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med. Genet. 6: 39.CrossRefPubMedGoogle Scholar
  8. Baysal, B. E. 2002. Hereditary paraganglioma targets diverse paraganglia. J. Med. Genet. 39: 617–622.CrossRefPubMedGoogle Scholar
  9. Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., van der, M. A., Taschner, P. E., Rubinstein, W. S., Myers, E. N., Richard, C. W., III, Cornelisse, C. J., Devilee, P., and Devlin, B. 2000. Mutations inSDHD., a mitochondrial complex II gene, in hereditary paraganglioma Science 287: 848–851.CrossRefPubMedGoogle Scholar
  10. Baysal, B. E., Willett-Brozick, J. E., Lawrence, E. C., Drovdlic, C. M., Savul, S. A., McLeod, D. R., Yee, H. A., Brackmann, D. E., Slattery, W. H., III, Myers, E. N., Ferrell, R. E., and Rubinstein, W. S. 2002. Prevalence ofSDHB.,SDHC, andSDHD germline mutations in clinic patients with head and neck paragangliomas J. Med. Genet. 39: 178–183.CrossRefPubMedGoogle Scholar
  11. Bourgeron, T., Chretien, D., Poggi-Bach, J., Doonan, S., Rabier, D., Letouze, P., Munnich, A., Rotig, A., Landrieu, P., and Rustin, P. 1994. Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J. Clin. Invest. 93: 2514–2518.CrossRefPubMedGoogle Scholar
  12. Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., and Rotig, A. 1995. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11: 144–149.CrossRefPubMedGoogle Scholar
  13. Brandon, M., Baldi, P., and Wallace, D. C. 2006. Mitochondrial mutations in cancer. Oncogene 25: 4647–4662.CrossRefPubMedGoogle Scholar
  14. Brouwers, F. M., Eisenhofer, G., Tao, J. J., Kant, J. A., Adams, K. T., Linehan, W. M., and Pacak, K. 2006. High frequency ofSDHB. germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing J. Clin. Endocrinol. Metab. 91: 4505–4509.CrossRefPubMedGoogle Scholar
  15. Cecchini, G., Maklashina, E., Yankovskaya, V., Iverson, T. M., and Iwata, S. 2003. Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases. FEBS Lett. 545: 31–38.CrossRefPubMedGoogle Scholar
  16. Coller, H. A., Khrapko, K., Bodyak, N. D., Nekhaeva, E., Herrero-Jimenez, P., and Thilly, W. G. 2001. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 28: 147–150.CrossRefPubMedGoogle Scholar
  17. Dahia, P. L., Ross, K. N., Wright, M. E., Hayashida, C. Y., Santagata, S., Barontini, M., Kung, A. L., Sanso, G., Powers, J. F., Tischler, A. S., Hodin, R., Heitritter, S., Moore, F., Dluhy, R., Sosa, J. A., Ocal, I. T., Benn, D. E., Marsh, D. J., Robinson, B. G., Schneider, K., Garber, J., Arum, S. M., Korbonits, M., Grossman, A., Pigny, P., Toledo, S. P., Nose, V., Li, C., and Stiles, C. D. 2005. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 1: 72–80.CrossRefPubMedGoogle Scholar
  18. Gallardo, M. E., Moreno-Loshuertos, R., Lopez, C., Casqueiro, M., Silva, J., Bonilla, F., Rodriguez, D. C., and Enriquez, J. A. 2006. m.6267G > A: A recurrent mutation in the human mitochondrial DNA that reduces cytochrome c oxidase activity and is associated with tumors. Hum. Mutat. 27: 575–582.CrossRefPubMedGoogle Scholar
  19. Gatenby, R. A. and Gillies, R. J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer4: 891–899.CrossRefPubMedGoogle Scholar
  20. Gottlieb, E. and Tomlinson, I. P. 2005. Mitochondrial tumour suppressors: A genetic and biochemical update. Nat. Rev. Cancer 5: 857–866.CrossRefPubMedGoogle Scholar
  21. Ishii, N., Fujii, M., Hartman, P. S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., and Suzuki, K. 1998. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394: 694–697.CrossRefPubMedGoogle Scholar
  22. Kaelin, W. G. 2005. Proline hydroxylation and gene expression. Annu. Rev. Biochem. 74: 115–128.CrossRefPubMedGoogle Scholar
  23. Kiuru, M. and Launonen, V. 2004. Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr. Mol. Med. 4: 869–875.CrossRefPubMedGoogle Scholar
  24. Kiuru, M., Lehtonen, R., Arola, J., Salovaara, R., Jarvinen, H., Aittomaki, K., Sjoberg, J., Visakorpi, T., Knuutila, S., Isola, J., Delahunt, B., Herva, R., Launonen, V., Karhu, A., and Aaltonen, L. A. 2002. Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res. 62: 4554–4557.PubMedGoogle Scholar
  25. Lee, S., Nakamura, E., Yang, H., Wei, W., Linggi, M. S., Sajan, M. P., Farese, R. V., Freeman, R. S., Carter, B. D., Kaelin, W. G., Jr., and Schlisio, S. 2005. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8: 155–167.CrossRefPubMedGoogle Scholar
  26. Neumann, H. P., Bausch, B., McWhinney, S. R., Bender, B. U., Gimm, O., Franke, G., Schipper, J., Klisch, J., Altehoefer, C., Zerres, K., Januszewicz, A., Eng, C., Smith, W. M., Munk, R., Manz, T., Glaesker, S., Apel, T. W., Treier, M., Reineke, M., Walz, M. K., Hoang-Vu, C., Brauckhoff, M., Klein-Franke, A., Klose, P., Schmidt, H., Maier-Woelfle, M., Peczkowska, M., Szmigielski, C., and Eng, C. 2002. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346: 1459–1466.CrossRefPubMedGoogle Scholar
  27. Neumann, H. P., Pawlu, C., Peczkowska, M., Bausch, B., McWhinney, S. R., Muresan, M., Buchta, M., Franke, G., Klisch, J., Bley, T. A., Hoegerle, S., Boedeker, C. C., Opocher, G., Schipper, J., Januszewicz, A., and Eng, C. 2004. Distinct clinical features of paraganglioma syndromes associated withSDHB. andSDHD gene mutations JAMA 292: 943–951.CrossRefPubMedGoogle Scholar
  28. Niemann, S. and Muller, U. 2000. Mutations inSDHC. cause autosomal dominant paraganglioma, type 3 Nat. Genet. 26: 268–270.CrossRefPubMedGoogle Scholar
  29. Oyedotun, K. S., Sit, C. S., and Lemire, B. D. 2007. The Saccharomyces cerevisiae succinate dehydrogenase does not require heme for ubiquinone reduction. Biochim. Biophys. Acta 1767: 1436–1445.CrossRefPubMedGoogle Scholar
  30. Parker, W. H. 2007. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil. Steril. 87: 725–736.CrossRefPubMedGoogle Scholar
  31. Piruat, J. I., Pintado, C. O., Ortega-Saenz, P., Roche, M., and Lopez-Barneo, J. 2004. The mitochondrialSDHD. gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia Mol. Cell Biol. 24: 10933–10940.CrossRefPubMedGoogle Scholar
  32. Pollard, P. J., Briere, J. J., Alam, N. A., Barwell, J., Barclay, E., Wortham, N. C., Hunt, T., Mitchell, M., Olpin, S., Moat, S. J., Hargreaves, I. P., Heales, S. J., Chung, Y. L., Griffiths, J. R., Dalgleish, A., McGrath, J. A., Gleeson, M. J., Hodgson, S. V., Poulsom, R., Rustin, P., and Tomlinson, I. P. 2005. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14: 2231–2239.CrossRefPubMedGoogle Scholar
  33. Pollard, P. J., Spencer-Dene, B., Shukla, D., Howarth, K., Nye, E., El Bahrawy, M., Deheragoda, M., Joannou, M., McDonald, S., Martin, A., Igarashi, P., Varsani-Brown, S., Rosewell, I., Poulsom, R., Maxwell, P., Stamp, G. W., and Tomlinson, I. P. 2007. Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell 11: 311–319.CrossRefPubMedGoogle Scholar
  34. Salas, A., Yao, Y. G., Macaulay, V., Vega, A., Carracedo, A., and Bandelt, H. J. 2005. A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med. 2: e296.CrossRefPubMedGoogle Scholar
  35. Saraste, M. 1999. Oxidative phosphorylation at the fin de siecle. Science 283: 1488–1493.CrossRefPubMedGoogle Scholar
  36. Schiavi, F., Boedeker, C. C., Bausch, B., Peczkowska, M., Gomez, C. F., Strassburg, T., Pawlu, C., Buchta, M., Salzmann, M., Hoffmann, M. M., Berlis, A., Brink, I., Cybulla, M., Muresan, M., Walter, M. A., Forrer, F., Valimaki, M., Kawecki, A., Szutkowski, Z., Schipper, J., Walz, M. K., Pigny, P., Bauters, C., Willet-Brozick, J. E., Baysal, B. E., Januszewicz, A., Eng, C., Opocher, G., and Neumann, H. P. 2005. Predictors and prevalence of paraganglioma syndrome associated with mutations of theSDHC. gene JAMA 294: 2057–2063.CrossRefPubMedGoogle Scholar
  37. Schofield, C. J. and Ratcliffe, P. J. 2004. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5: 343–354.CrossRefPubMedGoogle Scholar
  38. Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., Pan, Y., Simon, M. C., Thompson, C. B., and Gottlieb, E. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7: 77–85.CrossRefPubMedGoogle Scholar
  39. Shambaugh, G. E., III. 1977. Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. Am. J. Clin. Nutr. 30: 2083–2087.PubMedGoogle Scholar
  40. Smith, E. H., Janknecht, R., and Maher, L. J., III. 2007. Succinate inhibition of {alpha}-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum. Mol. Genet. 16: 3136–3148.CrossRefPubMedGoogle Scholar
  41. Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., and Rao, Z. 2005. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043–1057.CrossRefPubMedGoogle Scholar
  42. Suzuki, T., Sato, M., Yoshida, T., and Tuboi, S. 1989. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene. J. Biol. Chem. 264: 2581–2586.PubMedGoogle Scholar
  43. Szeto, S. S., Reinke, S. N., Sykes, B. D., and Lemire, B. D. 2007. Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J. Biol. Chem. 282: 27518–27526.CrossRefPubMedGoogle Scholar
  44. Timmers, H. J., Kozupa, A., Eisenhofer, G., Raygada, M., Adams, K. T., Solis, D., Lenders, J. W., and Pacak, K. 2007. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 92: 779–786.CrossRefPubMedGoogle Scholar
  45. Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R. R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R. S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomaki, K., Hia, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., and Aaltonen, L. A.. 2002Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30: 406–410.CrossRefPubMedGoogle Scholar
  46. Tran, Q. M., Rothery, R. A., Maklashina, E., Cecchini, G., and Weiner, J. H. 2007. Escherichia coli succinate dehydrogenase variant lacking the heme b. Proc. Natl. Acad. Sci. USA 104: 18007–18012.CrossRefPubMedGoogle Scholar
  47. Vanharanta, S., Pollard, P. J., Lehtonen, H. J., Laiho, P., Sjoberg, J., Leminen, A., Aittomaki, K., Arola, J., Kruhoffer, M., Orntoft, T. F., Tomlinson, I. P., Kiuru, M., Arango, D., and Aaltonen, L. A. 2006. Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum. Mol. Genet. 15: 97–103.CrossRefPubMedGoogle Scholar
  48. Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G., and Iwata, S. 2003. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299: 700–704.CrossRefPubMedGoogle Scholar
  49. Van der Mey, A. G., Maaswinkel-Mooy, P. D., Cornelisse, C. J., Schmidt, P. H., and van de Kamp, J. J. 1989. Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 2: 1291–1294.CrossRefPubMedGoogle Scholar
  50. Wallace, D. C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39: 359–407.CrossRefPubMedGoogle Scholar
  51. Warburg, O. 1956. On the origin of cancer cells. Science 123: 309–314.CrossRefPubMedGoogle Scholar
  52. Wei, M. H., Toure, O., Glenn, G. M., Pithukpakorn, M., Neckers, L., Stolle, C., Choyke, P., Grubb, R., Middelton, L., Turner, M. L., Walther, M. M., Merino, M. J., Zbar, B., Linehan, W. M., and Toro, J. R. 2006. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J. Med. Genet. 43: 18–27.CrossRefPubMedGoogle Scholar
  53. Zanssen, S., and Schon, E. A. 2005. Mitochondrial DNA mutations in cancer. PLoS Medicine, 2: e401.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA

Personalised recommendations