Mitochondrial Respiration and Differentiation

  • Roberto Scatena
  • Patrizia Bottoni
  • Bruno Giardina


Cell differentiation is the process by which a progenitor cell progressively matures to assume its final morphology and function. Numerous signal transduction pathways contribute to this complex process, and many of these signal transduction pathways and their abnormalities are fundamental to the development and pathogenesis of cancer. Lack of differentiation (i.e., dedifferentiation, retro-differentiation, or anaplasia) is a morphological hallmark of malignant transformation and implies a reversion from a high level of differentiation to a lower level. The degree of dedifferentiation differs among cancers, and is often correlated to malignancy.

However, recent evidence has shown that cancers do not only represent “reverse differentiation” of only mature, normal cell. Cancer may often arise from various maturation blocks in the so-called stem cells, which are pluripotent cells present in all specialized tissues that normally maintain the ability to differentiate into many...


Mitochondrial Respiration NADH Dehydrogenase Clofibric Acid Fumarate Hydratase PPAR Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baek, S.J., Kim, J.S., Nixon, J.B., Di Augustine, R.P., and Eling, T.E. 2003. Troglitazone, a peroxisome proliferator-activated receptor γ (PPAR γ) ligand, selectively induces the early growth response-1 gene independently of PPAR γ J Biol Chem278: 5845–5853.CrossRefPubMedGoogle Scholar
  2. Brandon, M., Baldi, P., and Fallace, D.C. 2006. Mitochondrial mutations in cancer. Oncogene 25: 4647–4662.CrossRefPubMedGoogle Scholar
  3. Cadenas, E. 2004. Mitochondrial free radical production and cell signaling. Mol Aspects Med 25: 17–26.CrossRefPubMedGoogle Scholar
  4. Calderwood, S.K., Khaleque, M.A., Sawyer, D.B., and Ciocca, D.R. 2006. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem Sci 31: 164–172.CrossRefPubMedGoogle Scholar
  5. Capuano, F., Varone, D., D’Eri, N., Russo, E., Tommasi, S., Montemurro, S., Prete, F., and Papa, S. 1996. Oxidative phosphorylation and F0F1 ATP synthase activity of human hepatocellular carcinoma. Biochem Mol Biol Int 38: 1013–1022.PubMedGoogle Scholar
  6. Carreras, M.C., Franco, M.C., Peralta, J.G., and Poderoso, J.J. 2004. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med 25: 125–139.CrossRefPubMedGoogle Scholar
  7. Cheng, W.C., Berman, S.B., Ivanovska,I., Jonas, E.A., Lee, S.J., Chen, Y., Kaczmarek, L.K., Pineda, F., and Hardwick, J.M. 2006. Mitochondrial factors with dual roles in death and survival. Oncogene 25: 4697–4705.CrossRefPubMedGoogle Scholar
  8. Clay, C.E., Monjazeb, A., Thorburn, J., Chilton, F.H., and High, K.P. 2002. 15-Deoxy-D12,14-prostaglandin J2-induced apoptosis does not require PPAR-γ in breast cancer cells J Lip Res43: 1818–1828.CrossRefGoogle Scholar
  9. Czarnecka, A.M., Campanella, C., Zummo, G., and Cappello, F. 2006. Mitochondrial chaperones in cancer: From molecular biology to clinical diagnostics. Cancer Biol Ther 5: 714–720PubMedGoogle Scholar
  10. Droge, W. 2002. Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95.PubMedGoogle Scholar
  11. Fantin, V.R., St-Pierre, J., and Leder, P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9: 425–434.CrossRefPubMedGoogle Scholar
  12. Faure Vigny, H., Heddi, A., Giraud, S., Chautard, D., and Stepien, G. 1996. Expression of oxidative phosphorylation genes in renal tumors and tumoral cell lines. Mol Carcinog 16: 165–172.CrossRefPubMedGoogle Scholar
  13. Felty, Q., and Roy, D. 2005. Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog 4: 1–18.CrossRefPubMedGoogle Scholar
  14. GaleE.A.2001. Lessons from the glitazones: A story of drug development. Lancet 357: 1870Ő1875.Google Scholar
  15. Gatenby, R.A., and Gillies, R.J. 2004. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4: 891–899.CrossRefPubMedGoogle Scholar
  16. Herrnstadt, C., Preston, G., and Howell, N. 2003. Errors, phantoms and otherwise, in human mtDNA sequences. Am J Hum Genet 72: 1585–1586.CrossRefPubMedGoogle Scholar
  17. Isley, W.L. 2003. Hepatotoxicity of thiazolidinediones. Expert Opin Drug Saf: 2581–586.CrossRefGoogle Scholar
  18. Issemann, I., and Green, S. 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650.CrossRefPubMedGoogle Scholar
  19. Kersten, S., Desvergne, B., and Wahli, W. 2000. Roles of PPARs in health disease. Nature 405: 421–424.CrossRefPubMedGoogle Scholar
  20. King, A., Selak, M.A., and Gottlieb, E. 2006. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25: 4675–4682.CrossRefPubMedGoogle Scholar
  21. Krieg, R.C., Knuechel, R., Schiffmann, E., Liotta, L.A., Petricoin, E.F.III, and Herrmann, P.C. 2004. Mitochondrial proteome: Cancer-altered metabolism associated with cytochrome c oxidase subunit level variation. Proteomics 4: 2789–2795.CrossRefPubMedGoogle Scholar
  22. Mathupala, S.P., Ko, Y.H., and Pedersen, P.L. 2006. Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25: 4777–4786.CrossRefPubMedGoogle Scholar
  23. McEnery, M.W., Hullihen, J., and Pedersen, P.L. 1989. F0 “proton channel” of rat liver mitochondria. Rapid purification of a functional complex and a study of its interaction with the unique probe diethylstilbestrol. J Biol Chem 264: 12029–12036.PubMedGoogle Scholar
  24. Michalik, L., Desvergne, B., and Wahli, W. 2004. Peroxisome proliferator-activated receptor and cancers: complex stories. Nat Rev Cancer 4: 61–70.CrossRefPubMedGoogle Scholar
  25. Modica-Napolitano, J.S., and Singh, K.K. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4: 755–762.CrossRefPubMedGoogle Scholar
  26. Moncada, S., and Erusalimsky, J.D. 2002. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3: 214–220.CrossRefPubMedGoogle Scholar
  27. Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E. 2007. Energy metabolism in tumor cells. FEBS J 274: 1393–1418.CrossRefPubMedGoogle Scholar
  28. R.W., Nesto, D., Bell, R.O., Bonow, Fonseca, V., Grundy, S.M., Horton, E.S., Le Winter, M., Porte, D., Semenkovich, C.F., Smith, S., Young, and L.H., Kahn, R., 2004. Thiazolidinedione use, fluid retention, and congestive heart failure: A consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 27: 256–263.CrossRefPubMedGoogle Scholar
  29. Palakurthi, S.S., Aktas, H., Grubissich, L.M., Mortensen, R.M., and Halperin, J.A. 2001. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor g and mediated by inhibition of translation initiation. Cancer Res 61: 6213–6218.PubMedGoogle Scholar
  30. Salas, A., Yao, Y.G., Macaulay, V., Vega, A., Carracedo, A., and Bandelt, H.J. 2005. A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2: 296.CrossRefGoogle Scholar
  31. Sanchez-Pino, M.J., Moreno, P., and Navarro, A. 2007. Mitochondrial dysfunction in human colorectal cancer progression. Front Biosci 12: 1190–1199.CrossRefPubMedGoogle Scholar
  32. Scatena, R., Nocca, G., Sole, P.D., Rumi, C., Puggioni, P., Remiddi, F., Bottoni, P., Ficarra, S., and Giardina, B. 1999. Bezafibrate as differentiating factor of human myeloid leukemia cells. Cell Death Differ 6: 781–787.CrossRefPubMedGoogle Scholar
  33. Scatena, R., Bottoni, P., Vincenzoni, F., Messana, I., Martorana, G.E., Nocca, G., De Sole, P., Maggiano, N., Castagnola, M., and Giardina, B. 2003. Bezafibrate induces a mitochondrial derangement in human cell lines: A PPAR-independent mechanism for a peroxisome proliferator. Chem Res Toxicol 16: 1440–1447.CrossRefPubMedGoogle Scholar
  34. Scatena, R., Bottoni, P., Martorana, G.E., Ferrari, F., De Sole, P., Rossi, C., and Giardina, B. 2004. Mitochondrial respiratory chain dysfunction, a non receptor-mediated effect of syntetic PPAR-ligands. Biochemical and pharmacological implications. Biochem Biophys Res Comm 319: 967–973.CrossRefPubMedGoogle Scholar
  35. Scatena, R., Bottoni, P., Martorana, G.E., Vincenzoni, F., Botta, G., Pastore, P., and Giardina, B. 2007. Mitochondria, ciglitazone and liver: A neglected interaction in biochemical pharmacology. Eur J Pharmacol 567: 50–58.CrossRefPubMedGoogle Scholar
  36. Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., Nakayama, K.I., Ide, T., Saya, H., and Hara, E. 2006. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8: 1291–1297.CrossRefPubMedGoogle Scholar
  37. Vinay, K., Abul, K., and Nelson, F. 2004. Neoplasia. In: Pathologic Basis of Disease (Robbins and Cotran, eds, pp. .)Elsevier Saunders:. Philadelphia, PA270–343.Google Scholar
  38. Youssef, J., and Badr, M. 1998. Extraperoxisomal targets of peroxisome proliferators: Mitochondrial, microsomal, and cytosolic effects. Implications for health and disease. Crit Rev Toxicol 28: 1–33.CrossRefPubMedGoogle Scholar
  39. Zheng, J., and Ramirez, V.D. 1999. Purification and identification of an estrogen binding protein from rat brain: Oligomycin sensitivityconferring protein (OSCP), a subunit of mitochondrial F0F1-ATP synthase/ATPase. J Steroid Biochem Mol Biol 68: 65–75.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Roberto Scatena
    • 1
  • Patrizia Bottoni
  • Bruno Giardina
  1. 1.Istituto Biochimica e Biochimica ClinicaUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations