Citrate Metabolism in Prostate and Other Cancers

  • Renty B. Franklin
  • Leslie C. Costello

The Metabolic Roles of Citrate in Normal Mammalian Cells

Citrate occupies a critical crossroad step in the intermediary metabolism of most normal mammalian cells (Fig. 1). It is synthesized in the mitochondria, where it becomes the entry oxidative substrate into the Krebs cycle. As such, its oxidation provides the major source of cellular ATP production. Because citrate is the common intermediate that results from glucose and fatty acid utilization, it is the link for their complete oxidation. This is the bioenergetic role of citrate that is most commonly considered to be the major relationship of citrate in cellular intermediary metabolism. However citrate serves other important metabolic roles. By virtue of its oxidation via the Krebs cycle, it provides several intermediates that couples the Krebs cycle with other associated synthetic and catabolic pathways of metabolism. For example, its oxidation to alpha ketoglutarate can be coupled by aminotransferases for the synthesis of amino...


Prostate Cell Prostatic Fluid Normal Prostate Epithelial Cell Normal Mammalian Cell Citrate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acknowledgment The studies of LCC and RBF described in this review were supported in part by NIH grants CA71207, CA21097, CA79903, and CA93443.


  1. Baggetto, L. G. 1992. Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74:959–974.CrossRefPubMedGoogle Scholar
  2. Costello, L. C., and Franklin, R. B. 1989. Prostate epithelial cells utilize glucose and aspartate as the carbon sources for net citrate production. Prostate 15:335–342.CrossRefPubMedGoogle Scholar
  3. Costello, L. C., and Franklin, R. B. 2001. The intermediary metabolism of the prostate: A key to understanding the pathogenesis and progression of prostate malignancy. Oncology 59:269–282.CrossRefGoogle Scholar
  4. Costello, L. C., and Franklin, R. B. 2002. Testosterone and prolactin regulation of metabolic genes and citrate metabolism of prostate epithelial cells. Horm Metabol Res 34:417–424.CrossRefGoogle Scholar
  5. Costello, L. C., and Franklin, R. B. 2005. “Why do tumor cells glycolyze?”: From glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8.CrossRefPubMedGoogle Scholar
  6. Costello,L. C.,Franklin,and R. B.2006. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: Connecting the dots. Mol Cancer 5:17.CrossRefPubMedGoogle Scholar
  7. Costello, L. C., Franklin, R. B., and Stacey, R. 1976. Mitochondrial isocitrate dehydrogenase and isocitrate oxidation of rat ventral prostate. Enzyme 21:495–506.PubMedGoogle Scholar
  8. Costello, L. C., Lao, L., and Franklin, R. B. 1993. Citrate modulation of high affinity aspartate transport in prostate epithelial cells. Cell Mol Biol 39:515–524.PubMedGoogle Scholar
  9. Costello, L. C., Liu, Y., Franklin, R. B., and Kennedy, M. C. 1997. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875–28881.CrossRefPubMedGoogle Scholar
  10. Costello, L. C., Franklin, R. B., and Narayan, P. 1999. Citrate in the diagnosis of prostate cancer. Prostate 15:237–245.CrossRefGoogle Scholar
  11. Costello, L. C., Guan, Z., Kukoyi, B., Feng, P., and Franklin, R. B. 2004. Terminal oxidation and the effects of zinc in prostate and liver mitochondria. Mitochondrion 4:331–338.CrossRefPubMedGoogle Scholar
  12. Costello, L. C., Feng, P., and Franklin, R. B. 2005. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5:143–153.CrossRefPubMedGoogle Scholar
  13. Feng, P., Liang, J. Y., Li, T. L., Guan, Z. X., Zou, J., Franklin, R. B., and Costello, L. C. 2000. Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol 4:31–36.PubMedGoogle Scholar
  14. Feng, P., Li, T. L., Guan, Z. X., Franklin, R. B., and Costello, L. C. 2002. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 52:311–318CrossRefPubMedGoogle Scholar
  15. Franklin, R. B., and Costello, L. C. 2007. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 463:211–217.CrossRefPubMedGoogle Scholar
  16. Franklin, R. B., Lao, L., and Costello, L. C. 1990. Evidence for two aspartate transport systems in prostate epithelial cells. Prostate 16:137–146.CrossRefPubMedGoogle Scholar
  17. Franklin, R. B., Milon, B., Feng, P., and Costello, L. C. 2005. Zinc and zinc transporter in normal prostate function and the pathogenesis of prostate cancer. Frontiers Biosci 10:2230–2239.CrossRefGoogle Scholar
  18. Franklin, R. B., Zou, J., Yu, Z., and Costello, L. C. 2006. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinityl.-aspartate transporter; and is regulated by prolactin and testosterone BMC Biochemistry 7:10.CrossRefPubMedGoogle Scholar
  19. Guan, Z., Kukoyi, B., Feng, P., Kennedy, M. C., Franklin, R. B., Costello, L. C. 2003. Kinetic identification of a mitochondrial zinc uptake transport process in prostate cells. J Inorganic Biochem 97:199–206.CrossRefGoogle Scholar
  20. Halliday, K. R., Fenoglio-Preiser, C., and Sillerud, L. O. 1988. Differentiation of human tumors from nonmalignant tissue by natural-abundance 13C NMR spectroscopy. Magn Reson Med 7:384–411.CrossRefPubMedGoogle Scholar
  21. Harkonen, P. L. 1981. Androgenic control of glycolysis, the pentose cycle and pyruvate dehydrogenase in the rat ventral prostate. J Steroid Biochem Mol Biol 14:1075–1084.Google Scholar
  22. Huggins, C. 1947. The prostatic secretion. Harvey Lect 42:148–193.Google Scholar
  23. Kline, E. E., Treat, E. G., Averna, T. A., Davis, M. S., Smith, A. Y., and Sillerud, L. O. 2006. Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. J Urol 176:2274–2279.CrossRefPubMedGoogle Scholar
  24. Krezel, A., Hao, Q., and Maret, W. 2007. The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200.CrossRefPubMedGoogle Scholar
  25. Kurhanewicz, J., Swanson, M. G., Nelson, S. J. and Vigneron, D. B. 2002. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Mag Reson Imag 16:451–463.CrossRefGoogle Scholar
  26. Lao, L., Franklin, R. B., and Costello, L. C. 1993. A high affinity L-aspartate transporter in prostate epithelial cells which is regulated by testosterone. Prostate 22:53–63.CrossRefPubMedGoogle Scholar
  27. McKeechan, W. L. 1982. Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6:635–650.CrossRefGoogle Scholar
  28. Moreadith, R. W., and Lehninger, A. L. 1984. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem 259:6215–6221.PubMedGoogle Scholar
  29. Muntzing, J., Varkarakis, M. J., Saroff, J., and Murphy, G. P. 1975. Comparison and significance of respiration and glycolysis of prostatic tissue from various species. J Med Primatol 4:245–251.PubMedGoogle Scholar
  30. Outten, C. E., and O’Halloran, T. V. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492.CrossRefPubMedGoogle Scholar
  31. Parlo, R. A., and Coleman, P. S. 1984. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. J Biol Chem 259:997–10003.Google Scholar
  32. Parlo, R. A., and Coleman, P. S. 1986. Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2. in tumors: Further evidence for a persistent truncated Krebs cycle in hepatomas Biochim Biophys Acta 886:169–176.CrossRefPubMedGoogle Scholar
  33. Pedersen, P. L. 1978. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274.PubMedGoogle Scholar
  34. Racker, E., and Spector, M. 1981. Warburg effect revisited: Merger of biochemistry and molecular biology. Science 213:303–307.CrossRefPubMedGoogle Scholar
  35. Schiebler, M. L., Schnall, M. D., Pollack, H. M., Lenkinski, R. E., Tomaszewski, J. E., Wein, A. J., Whittington, R., Rauschning, and W., Kressel, H. Y.1993. Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology 189:339–352.PubMedGoogle Scholar
  36. Singh, K. K., Desouki, M. M., Franklin, R. B., and Costello, L. C. 2006. Mitochondrial Aconitase and Citrate Metabolism in Malignant and Nonmalignant Human Prostate Tissues. Mol Cancer 5:14.CrossRefPubMedGoogle Scholar
  37. Swinnen, J. V., Heemers, H., Heyns, W., and Verhoeven, G. 2002. Androgen regulation of lipogenesis. Adv Exp Med Biol 506:379–387.PubMedGoogle Scholar
  38. Vallee, B. H., and Falchuk, K. H. 1993. Physiol Rev 73:79–118. The biochemical basis of zinc physiology.PubMedGoogle Scholar
  39. Warburg, O., Wind, F., and Negelein, E. 1926. Uber den Stoffwechsel von Tumoren im Korper. Klin Woch 5:829–832.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Renty B. Franklin
    • 1
  • Leslie C. Costello
  1. 1.Costello Department of Physiology and EndocrinologyGreenebaum Cancer Center, University of MarylandBaltimoreUSA

Personalised recommendations