Warburg and his Legacy

  • Michael Ristow
  • Tim J. Schulz


In the early twentieth century when the German physiologist Otto Warburg forwarded his hypothesis on the origin of cancer cells (Warburg et al.1924), not much was know on the mechanisms underlying the formation and growth of tumors. Cancer remained a rather mysterious disease, receiving its designation from the ancient Greek physician Hippocrates because of its resemblance to crayfish extremities invading healthy tissue. Warburg, aside from investigating the biochemical fundamentals of cellular respiration and oxygen utilization in the cell, for which he was awarded the 1931 Nobel Prize in physiology and medicine (Warburg1931), performed hallmark experiments on the metabolic characteristics of tumor cells (Warburg et al.1924).

However, when Otto Warburg published an updated version of his original articles in the internationally renowned journal Science in 1956 (Warburg 1956a, b), future directions of cancer research appeared to be a matter of fierce debate already (Weinhouse


Cancer Gene Mitochondrial Activity Lactic Acid Production Metabolic Shift Glycolytic Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alessi,D. R.,Sakamoto,K., andBayascas,J. R.2006. LKB1-dependent signaling pathways. Annu Rev Biochem,75:137–163.CrossRefGoogle Scholar
  2. Altenberg,B. andGreulich,K. O.2004. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics,84:1014–1020.CrossRefGoogle Scholar
  3. Baggetto,L. G.1992. Role of mitochondria in carcinogenesis. Eur J Cancer,29A:156–159.Google Scholar
  4. Bensaad,K.,Tsuruta,A.,Selak,M. A.,Vidal,M. N.,Nakano,K.,Bartrons,R.,Gottlieb,E., andVousden,K. H.2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell,126:107–120.CrossRefGoogle Scholar
  5. Bi,X.,Lin,Q.,Foo,T. W.,Joshi,S.,You,T.,Shen,H. M.,Ong,C. N.,Cheah,P. Y.,Eu,K. W., andHew,C. L.2006. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics,5:1119–1130.CrossRefGoogle Scholar
  6. Birnbaum,M. J.,Haspel,H. C., andRosen,O. M.1987. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science,235:1495–1498.CrossRefGoogle Scholar
  7. Boveri,T.1902. Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns., Vol. 35, Vehr. d. phys. med. Ges. zu Wurzburg. Wurzburg: 67–90.Google Scholar
  8. Boveri,T.1914. Zur Frage der Entstehung maligner Tumoren. Gustav Fischer Verlag.Jena:Google Scholar
  9. Brown,J.1962. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism,11:1098–1112.Google Scholar
  10. Bulavin,D. V. andFornace,A. J.,Jr. 2004. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res,92:95–118.CrossRefGoogle Scholar
  11. Bustamante,E. andPedersen,P. L.1977. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA,74:3735–3739.CrossRefGoogle Scholar
  12. Bustamante,E.,Morris,H. P., andPedersen,P. L.1981. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem,256:8699–8704.Google Scholar
  13. Carew,J. S. andHuang,P.2002. Mitochondrial defects in cancer. Mol Cancer,1:9.CrossRefGoogle Scholar
  14. Chen, Z., Lu, W., Garcia-Prieto, C., and Huang, P. 2007. The Warburg effect and its cancer therapeutic implications. J Bioenerg BiomembrGoogle Scholar
  15. Cuezva,J. M.,Krajewska,M.,de Heredia,M. L.,Krajewski,S.,Santamaria,G.,Kim,H.,Zapata,J. M.,Marusawa,H.,Chamorro,M., andReed,J. C.2002. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res,62:6674–6681.Google Scholar
  16. Cuezva,J. M.,Chen,G.,Alonso,A. M.,Isidoro,A.,Misek,D. E.,Hanash,S. M., andBeer,D. G.2004. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis,25:1157–1163.CrossRefGoogle Scholar
  17. Dang,C. V.,Lewis,B. C.,Dolde,C.,Dang,G., andShim,H.1997. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr,29:345–354.CrossRefGoogle Scholar
  18. De Lena,M.,Lorusso,V.,Latorre,A.,Fanizza,G.,Gargano,G.,Caporusso,L.,Guida,M.,Catino,A.,Crucitta,E.,Sambiasi,D., andMazzei,A.2001. Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. Eur J Cancer,37:364–368.CrossRefGoogle Scholar
  19. Di Cosimo,S.,Ferretti,G.,Papaldo,P.,Carlini,P.,Fabi,A., andCognetti,F.2003. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc),39:157–174.CrossRefGoogle Scholar
  20. Ebert,B. L.,Firth,J. D., andRatcliffe,P. J.1995. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem,270:29083–29089.CrossRefGoogle Scholar
  21. Elstrom,R. L.,Bauer,D. E.,Buzzai,M.,Karnauskas,R.,Harris,M. H.,Plas,D. R.,Zhuang,H.,Cinalli,R. M.,Alavi,A.,Rudin,C. M., andThompson,C. B.2004. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res,64:3892–3899.CrossRefGoogle Scholar
  22. Fantin,V. R.,St-Pierre,J., andLeder,P.2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell,9:425–434.CrossRefGoogle Scholar
  23. Fearon,E. R. andVogelstein,B.1990. A genetic model for colorectal tumorigenesis. Cell,61:759–767.CrossRefGoogle Scholar
  24. Firth,J. D.,Ebert,B. L., andRatcliffe,P. J.1995. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem,270:21021–21027.CrossRefGoogle Scholar
  25. Flier,J. S.,Mueckler,M. M.,Usher,P., andLodish,H. F.1987. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science,235:1492–1495.CrossRefGoogle Scholar
  26. Floridi,A.,Paggi,M. G.,Marcante,M. L.,Silvestrini,B.,Caputo,A., andDe Martino,C.1981. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J Natl Cancer Inst,66:497–499.Google Scholar
  27. Floridi,A.,Bruno,T.,Miccadei,S.,Fanciulli,M.,Federico,A., andPaggi,M. G.1998. Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant Ehrlich ascites tumor cells through modulation of energy metabolism. Biochem Pharmacol,56:841–849.CrossRefGoogle Scholar
  28. Gambhir,S. S.2002. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer,2:683–693.CrossRefGoogle Scholar
  29. Gatenby,R. A. andGillies,R. J.2004. Why do cancers have high aerobic glycolysis? Nat Rev Cancer,4:891–899.CrossRefGoogle Scholar
  30. Gerber,J.,Mühlenhoff,U., andLill,R.2003. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep,4:906–911.CrossRefGoogle Scholar
  31. Geschwind,J. F.,Ko,Y. H.,Torbenson,M. S.,Magee,C., andPedersen,P. L.2002. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res,62:3909–3913.Google Scholar
  32. Grover-McKay,M.,Walsh,S. A.,Seftor,E. A.,Thomas,P. A., andHendrix,M. J.1998. Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res,4:115–120.CrossRefGoogle Scholar
  33. Hawkins,R. A. andPhelps,M. E.1988. PET in clinical oncology. Cancer Metastasis Rev,7:119–142.CrossRefGoogle Scholar
  34. Herrmann, P. C. and Herrmann, E. C. 2007. Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J Bioenerg BiomembrGoogle Scholar
  35. Hervouet,E.,Demont,J.,Pecina,P.,Vojtiskova,A.,Houstek,J.,Simonnet,H., andGodinot,C.2005. A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis,26:531–539.CrossRefGoogle Scholar
  36. Ingram,D. K.,Zhu,M.,Mamczarz,J.,Zou,S.,Lane,M. A.,Roth,G. S., anddeCabo,R.2006. Calorie restriction mimetics: an emerging research field. Aging Cell,5:97–108.CrossRefGoogle Scholar
  37. Inoki,K.,Zhu,T., andGuan,K. L.2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell,115:577–590.CrossRefGoogle Scholar
  38. Isidoro,A.,Martinez,M.,Fernandez,P. L.,Ortega,A. D.,Santamaria,G.,Chamorro,M.,Reed,J. C., andCuezva,J. M.2004. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J,378:17–20.CrossRefGoogle Scholar
  39. Isidoro,A.,Casado,E.,Redondo,A.,Acebo,P.,Espinosa,E.,Alonso,A. M.,Cejas,P.,Hardisson,D.,Fresno Vara,J. A.,Belda-Iniesta,C.,Gonzalez-Baron,M., andCuezva,J. M.2005. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis,26:2095–2104.CrossRefGoogle Scholar
  40. Jelluma,N.,Yang,X.,Stokoe,D.,Evan,G. I.,Dansen,T. B., andHaas-Kogan,D. A.2006. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res,4:319–330.CrossRefGoogle Scholar
  41. Jones,R. G.,Plas,D. R.,Kubek,S.,Buzzai,M.,Mu,J.,Xu,Y.,Birnbaum,M. J., andThompson,C. B.2005. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell,18:283–293.CrossRefGoogle Scholar
  42. Kahn,B. B.,Alquier,T.,Carling,D., andHardie,D. G.2005. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab,1:15–25.CrossRefGoogle Scholar
  43. Kim,J. W.,Tchernyshyov,I.,Semenza,G. L., andDang,C. V.2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab,3:177–185.CrossRefGoogle Scholar
  44. Ko,Y. H.,Pedersen,P. L., andGeschwind,J. F.2001. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett,173:83–91.CrossRefGoogle Scholar
  45. Ko,Y. H.,Smith,B. L.,Wang,Y.,Pomper,M. G.,Rini,D. A.,Torbenson,M. S.,Hullihen,J., andPedersen,P. L.2004. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun,324:269–275.CrossRefGoogle Scholar
  46. Koukourakis,M. I.,Giatromanolaki,A.,Sivridis,E.,Gatter,K. C., andHarris,A. L.2005. Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia,7:1–6.CrossRefGoogle Scholar
  47. Lane,M. A.1998. 2-Deoxy-D-Glucose Feeding in Rats Mimics Physiologic Effects of Calorie Restriction. JOURNAL OF ANTI-AGING MEDICINE,1:327–336.Google Scholar
  48. Lu,H.,Forbes,R. A., andVerma,A.2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem,277:23111–23115.CrossRefGoogle Scholar
  49. Lu,H.,Dalgard,C. L.,Mohyeldin,A.,McFate,T.,Tait,A. S., andVerma,A.2005. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem,280:41928–41939.CrossRefGoogle Scholar
  50. Ma, W., Sung, H. J., Park, J. Y., Matoba, S., and Hwang, P. M. 2007. A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg BiomembrGoogle Scholar
  51. Macdonald,F. andFord,C. H. J.1992. Oncogenes and tumor Suppressor genes (Medical perspectives series), BIOS Scientfic Publishers.Oxford: 112.Google Scholar
  52. Manchester,K.1997. The quest by three giants of science for an understanding of cancer. Endeavour,21:72–76.CrossRefGoogle Scholar
  53. Maschek,G.,Savaraj,N.,Priebe,W.,Braunschweiger,P.,Hamilton,K.,Tidmarsh,G. F.,De Young,L. R., andLampidis,T. J.2004. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res,64:31–34.CrossRefGoogle Scholar
  54. Mathupala,S. P.,Heese,C., andPedersen,P. L.1997. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem,272:22776–22780.CrossRefGoogle Scholar
  55. Matoba,S.,Kang,J. G.,Patino,W. D.,Wragg,A.,Boehm,M.,Gavrilova,O.,Hurley,P. J.,Bunz,F., andHwang,P. M.2006. p53 regulates mitochondrial respiration. Science,312:1650–1653.CrossRefGoogle Scholar
  56. Maxwell,P. H.,Dachs,G. U.,Gleadle,J. M.,Nicholls,L. G.,Harris,A. L.,Stratford,I. J.,Hankinson,O.,Pugh,C. W., andRatcliffe,P. J.1997. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA,94:8104–8109.CrossRefGoogle Scholar
  57. McKusick, V. A., Kniffin, C. L., Tiller, G. E., Wright, M. J., Hamosh, A., Antonarakis, S. E., Rasmussen, S. A., Smith, M., Brennan, P., and Rasooly, R. S. 2007. Online mendelian inheritance in man: von Hippel-Lindau syndrome (OMIM 193300).,
  58. Mühlenhoff,U.,Richhardt,N.,Ristow,M.,Kispal,G., andLill,R.2002. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet,11:2025–2036.CrossRefGoogle Scholar
  59. Natali,P. G.,Salsano,F.,Viora,M.,Nista,A.,Malorni,W.,Marolla,A., andDe Martino,C.1984. Inhibition of aerobic glycolysis in normal and neoplastic lymphoid cells induced by Lonidamine [1-(2,4-dichlorobenzyl)-I-H-indazol-3-carboxylic acid]. Oncology,41 (Suppl.1): 7–14.CrossRefGoogle Scholar
  60. Osthus,R. C.,Shim,H.,Kim,S.,Li,Q.,Reddy,R.,Mukherjee,M.,Xu,Y.,Wonsey,D.,Lee,L. A., andDang,C. V.2000. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem,275:21797–21800.CrossRefGoogle Scholar
  61. Oudard,S.,Carpentier,A.,Banu,E.,Fauchon,F.,Celerier,D.,Poupon,M. F.,Dutrillaux,B.,Andrieu,J. M., andDelattre,J. Y.2003. Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol,63:81–86.CrossRefGoogle Scholar
  62. Papandreou,I.,Cairns,R. A.,Fontana,L.,Lim,A. L., andDenko,N. C.2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab,3:187–197.CrossRefGoogle Scholar
  63. Pasteur, L. 1861. Influence de l’oxygene sur le developpement de la levure et la fermentation alcoolique. Bulletin de la Societe Chimique de Paris, p. 79–80.Google Scholar
  64. Pedersen,P. L.1978. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res,22:190–274.Google Scholar
  65. Pelicano,H.,Martin,D. S.,Xu,R. H., andHuang,P.2006a. Glycolysis inhibition for anticancer treatment. Oncogene,25:4633–4646.CrossRefGoogle Scholar
  66. Pelicano,H.,Xu,R. H.,Du,M.,Feng,L.,Sasaki,R.,Carew,J. S.,Hu,Y.,Ramdas,L.,Hu,L.,Keating,M. J.,Zhang,W.,Plunkett,W., andHuang,P.2006b. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol,175:913–923.CrossRefGoogle Scholar
  67. Petros,J. A.,Baumann,A. K.,Ruiz-Pesini,E.,Amin,M. B.,Sun,C. Q.,Hall,J.,Lim,S.,Issa,M. M.,Flanders,W. D.,Hosseini,S. H.,Marshall,F. F., andWallace,D. C.2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA,102:719–724.CrossRefGoogle Scholar
  68. Raghunand,N.,Gatenby,R. A., andGillies,R. J.2003. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol,76 (S11–S22.Spec No. 1):CrossRefGoogle Scholar
  69. Ramanathan,A.,Wang,C., andSchreiber,S. L.2005. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA,102:5992–5997.CrossRefGoogle Scholar
  70. Rathmell,J. C.,Fox,C. J.,Plas,D. R.,Hammerman,P. S.,Cinalli,R. M., andThompson,C. B.2003. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol,23:7315–7328.CrossRefGoogle Scholar
  71. Reznick,R. M. andShulman,G. I.2006. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol,574:33–39.CrossRefGoogle Scholar
  72. Robey,I. F.,Lien,A. D.,Welsh,S. J.,Baggett,B. K., andGillies,R. J.2005. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia,7:324–330.CrossRefGoogle Scholar
  73. Sakashita,M.,Aoyama,N.,Minami,R.,Maekawa,S.,Kuroda,K.,Shirasaka,D.,Ichihara,T.,Kuroda,Y.,Maeda,S., andKasuga,M.2001. Glut1 expression in T1 and T2 stage colorectal carcinomas: its relationship to clinicopathological features. Eur J Cancer,37:204–209.CrossRefGoogle Scholar
  74. Schulz,T. J.,Thierbach,R.,Voigt,A.,Drewes,G.,Mietzner,B. H.,Steinberg,P.,Pfeiffer,A. F., andRistow,M.2006. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem,281:977–981.CrossRefGoogle Scholar
  75. Semenza,G. L.2001. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell,107:1–3.CrossRefGoogle Scholar
  76. Semenza, G. L. 2007. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg BiomembrGoogle Scholar
  77. Semenza,G. L. andWang,G. L.1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol,12:5447–5454.Google Scholar
  78. Semenza,G. L.,Roth,P. H.,Fang,H. M., andWang,G. L.1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem,269:23757–23763.Google Scholar
  79. Shaw,R. J.2006. Glucose metabolism and cancer. Curr Opin Cell Biol,18:598–608.CrossRefGoogle Scholar
  80. Shim,H.,Dolde,C.,Lewis,B. C.,Wu,C. S.,Dang,G.,Jungmann,R. A.,Dalla-Favera,R., andDang,C. V.1997. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA,94:6658–6663.CrossRefGoogle Scholar
  81. Singh,D.,Banerji,A. K.,Dwarakanath,B. S.,Tripathi,R. P.,Gupta,J. P.,Mathew,T. L.,Ravindranath,T., andJain,V.2005. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol,181:507–514.CrossRefGoogle Scholar
  82. Singh,K. K.2004. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann NY Acad Sci,1019:260–264.CrossRefGoogle Scholar
  83. Smith,T. A.,Sharma,R. I.,Thompson,A. M., andPaulin,F. E.2006. Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. J Nucl Med,47:1525–1530.Google Scholar
  84. Sols,A. andCrane,R. K.1954. Substrate specificity of brain hexokinase. J Biol Chem,210:581–595.Google Scholar
  85. Stiles,B.,Groszer,M.,Wang,S.,Jiao,J., andWu,H.2004. PTENless means more. Dev Biol,273:175–184.CrossRefGoogle Scholar
  86. Stryer,L.1995. Biochemistry. W. H. Freeman.New York:Google Scholar
  87. Taylor,R. W. andTurnbull,D. M.2005. Mitochondrial DNA mutations in human disease. Nat Rev Genet,6:389–402.CrossRefGoogle Scholar
  88. Thierbach,R.,Schulz,T. J.,Isken,F.,Voigt,A.,Mietzner,B.,Drewes,G.,von Kleist-Retzow,J. C.,Wiesner,R. J.,Magnuson,M. A.,Puccio,H.,Pfeiffer,A. F.,Steinberg,P., andRistow,M.2005. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span, and tumor growth in mice. Hum Mol Genet,14:3857–3864.CrossRefGoogle Scholar
  89. Timofeev,O.,Lee,T. Y., andBulavin,D. V.2005. A subtle change in p38 MAPK activity is sufficient to suppress in vivo tumorigenesis. Cell Cycle,4:118–120.Google Scholar
  90. Vogelstein,B. andKinzler,K. W.1993. The multistep nature of cancer. Trends Genet,9:138–141.CrossRefGoogle Scholar
  91. Warburg, O. 1930. The Metabolism of Tumours. London: Constable.Google Scholar
  92. Warburg, O. 1931. The oxygen-transferring ferment of respiration. Nobel Lecture,Google Scholar
  93. Warburg,O.1956a. On the origin of cancer cells. Science,123:309–314.CrossRefGoogle Scholar
  94. Warburg,O.1956b. On respiratory impairment in cancer cells. Science,124:269–270.Google Scholar
  95. Warburg,O.,Posener,K., andNegelein,E.1924. Über den Stoffwechsel der Tumoren (On metabolism of tumors). Biochemische Zeitschrift,152:319–344.Google Scholar
  96. Warburg, O., Wind, F., and Negelein, E. 1926. The metabolism of tumors in the body. J Gen Physiol 519–530.Google Scholar
  97. Weinhouse,S.1956. On respiratory impairment in cancer cells. Science,124:267–269.CrossRefGoogle Scholar
  98. Wu,M.,Neilson,A.,Swift,A. L.,Moran,R.,Tamagnine,J.,Parslow,D.,Armistead,S.,Lemire,K.,Orrell,J.,Teich,J.,Chomicz,S., andFerrick,D. A.2007. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol,292:C125–C136.CrossRefGoogle Scholar
  99. Xu,R. H.,Pelicano,H.,Zhou,Y.,Carew,J. S.,Feng,L.,Bhalla,K. N.,Keating,M. J., andHuang,P.2005. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res,65:613–621.CrossRefGoogle Scholar
  100. Younes,M.,Lechago,L. V., andLechago,J.1996. Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clin Cancer Res,2:1151–1154.Google Scholar
  101. Zhang,X. D.,Deslandes,E.,Villedieu,M.,Poulain,L.,Duval,M.,Gauduchon,P.,Schwartz,L., andIcard,P.2006. Effect of 2-deoxy-d.-glucose on various malignant cell lines in vitro Anticancer Res,26:3561–3566.Google Scholar
  102. Zhou,S.,Kachhap,S., andSingh,K. K.2003. Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis,18:287–292.CrossRefGoogle Scholar
  103. Zhu,Z.,Jiang,W.,McGinley,J. N., andThompson,H. J.2005. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res,65:7023–7030.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Human NutritionInstitute of Nutrition, University of JenaGermany

Personalised recommendations