Reversing the Warburg Effect: Metabolic Modulation as a Novel Cancer Therapy

  • Gopinath Sutendra
  • Evangelos D. Michelakis


Despite the research efforts and enormous investments from the industry and the public, oncology has an impressively poor success rate in the clinical development of effective investigational drugs; less than a third of that in cardiovascular or infectious diseases (Kamb et al.2007). Traditionally, oncology drug development has focusedessential targets (i.e. essential for the survival of all dividing cells). This approach suffers from low selectivity and thus narrow therapeutic windows. In contrast, more selectivity is achieved by targeting nonessential targets, but as expected, this approach suffers from poor efficacy. It is extremely rare to find a target that is essential only to cancer cells; the dependence of chronic myelogenous leukemia cells on Ableson kinase is induced by a chromosomal translocation only in the malignant cells, making the efficacy and selectivity of imatinib, anexception in experimental oncology (Kamb et al.2007).

The biggest challenges in cancer...


Peripheral Neuropathy Mitochondrial Membrane Potential Lactic Acidosis Glucose Oxidation Aerobic Glycolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bersin, R.M. and Stacpoole, P.W. (1997). Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 134, 841–55.CrossRefGoogle Scholar
  2. Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T., Lopaschuk, G.D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C.J., Andrade, M.A., Thebaud, B. and Michelakis, E.D. (2007a). A mitochondria-K+. channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth Cancer Cell 11, 37–51.CrossRefGoogle Scholar
  3. Bonnet, S., Rochefort, G., Sutendra, G., Archer, S.L., Haromy, A., Webster, L., Hashimoto, K., Bonnet, S.N. and Michelakis, E.D. (2007b). The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104, 11418–23.CrossRefGoogle Scholar
  4. Chen, L.B. (1988). Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4, 155–81.CrossRefGoogle Scholar
  5. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–9.CrossRefGoogle Scholar
  6. Duchen, M.R. (1999). Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516 (Pt 1), 1–17.CrossRefGoogle Scholar
  7. Elstrom, R.L., Bauer, D.E., Buzzai, M., Karnauskas, R., Harris, M.H., Plas, D.R., Zhuang, H., Cinalli, R.M., Alavi, A., Rudin, C.M. and Thompson, C.B. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64, 3892–9.CrossRefGoogle Scholar
  8. Fantin, V.R., St-Pierre, J. and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–34.CrossRefGoogle Scholar
  9. Gambhir, S.S. (2002). Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2, 683–93.CrossRefGoogle Scholar
  10. Gatenby, R.A. and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891–9.CrossRefGoogle Scholar
  11. Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R.B. and Hay, N. (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15, 1406–18.CrossRefGoogle Scholar
  12. Green, D.R. and Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science 305, 626–9.CrossRefGoogle Scholar
  13. Kamb, A., Wee, S. and Lengauer, C. (2007). Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6, 115–20.CrossRefGoogle Scholar
  14. Kim, J.W. and Dang, C.V. (2005). Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30, 142–50.CrossRefGoogle Scholar
  15. Kim, J.W. and Dang, C.V. (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66, 8927–30.CrossRefGoogle Scholar
  16. Kim, J.W., Tchernyshyov, I., Semenza, G.L. and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177–85.CrossRefGoogle Scholar
  17. Knoechel, T.R., Tucker, A.D., Robinson, C.M., Phillips, C., Taylor, W., Bungay, P.J., Kasten, S.A., Roche, T.E. and Brown, D.G. (2006). Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands. Biochemistry 45, 402–15.CrossRefGoogle Scholar
  18. Koukourakis, M.I., Giatromanolaki, A., Sivridis, E., Gatter, K.C. and Harris, A.L. (2005). Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia 7, 1–6.CrossRefGoogle Scholar
  19. Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5, 472–84.CrossRefGoogle Scholar
  20. Mathupala, S.P., Heese, C. and Pedersen, P.L. (1997). Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272, 22776–80.CrossRefGoogle Scholar
  21. Mathupala, S.P., Rempel, A. and Pedersen, P.L. (2001). Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 276, 43407–12.CrossRefGoogle Scholar
  22. Michelakis, E.D., Thebaud, B., Weir, E.K. and Archer, S.L. (2004). Hypoxic pulmonary vasoconstriction: redox regulation of O2.-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells J Mol Cell Cardiol 37, 1119–36.Google Scholar
  23. Neri, D. and Bicknell, R. (2005). Tumour vascular targeting. Nat Rev Cancer 5, 436–46.CrossRefGoogle Scholar
  24. Osaki, M., Oshimura, M. and Ito, H. (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667–76.CrossRefGoogle Scholar
  25. Pan, J.G. and Mak, T.W. (2007). Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE 2007, pe14.Google Scholar
  26. Pastorino, J.G. and Hoek, J.B. (2003). Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10, 1535–51.CrossRefGoogle Scholar
  27. Pastorino, J.G., Shulga, N. and Hoek, J.B. (2002). Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277, 7610–8.CrossRefGoogle Scholar
  28. Pastorino, J.G., Hoek, J.B. and Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65, 10545–54.CrossRefGoogle Scholar
  29. Plas, D.R. and Thompson, C.B. (2002). Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 13, 75–8.CrossRefGoogle Scholar
  30. Remillard, C.V. and Yuan, J.X. (2004). Activation of K+. channels: an essential pathway in programmed cell death Am J Physiol Lung Cell Mol Physiol 286, L49–L67.CrossRefGoogle Scholar
  31. Robey, I.F., Lien, A.D., Welsh, S.J., Baggett, B.K. and Gillies, R.J. (2005). Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 7, 324–30.CrossRefGoogle Scholar
  32. Semenza, G.L., Artemov, D., Bedi, A., Bhujwalla, Z., Chiles, K., Feldser, D., Laughner, E., Ravi, R., Simons, J., Taghavi, P. and Zhong, H. (2001). ‘The metabolism of tumours’: 70 years later. Novartis Found Symp 240, 251–60; discussion 260–4.CrossRefGoogle Scholar
  33. Stacpoole, P.W. (1969). Review of the pharmacologic and therapeutic effects of diisopropylammonium dichloroacetate (DIPA). J Clin Pharmacol J New Drugs 9, 282–91.Google Scholar
  34. Stacpoole, P.W. (1989). The pharmacology of dichloroacetate. Metabolism 38, 1124–44.CrossRefGoogle Scholar
  35. Stacpoole, P.W., Nagaraja, N.V. and Hutson, A.D. (2003). Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43, 683–91.Google Scholar
  36. Stacpoole, P.W., Kerr, D.S., Barnes, C., Bunch, S.T., Carney, P.R., Fennell, E.M., Felitsyn, N.M., Gilmore, R.L., Greer, M., Henderson, G.N., Hutson, A.D., Neiberger, R.E., O'Brien, R.G., Perkins, L.A., Quisling, R.G., Shroads, A.L., Shuster, J.J., Silverstein, J.H., Theriaque, D.W. and Valenstein, E. (2006). Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117, 1519–31.CrossRefGoogle Scholar
  37. Thompson, J.E. and Thompson, C.B. (2004). Putting the rap on Akt. J Clin Oncol, 22, 4217–26.CrossRefGoogle Scholar
  38. Warburg, O. (1930). Ueber den stoffwechsel der tumoren. Constable: London.Google Scholar
  39. Weir, E.K., Lopez-Barneo, J., Buckler, K.J. and Archer, S.L. (2005). Acute oxygen-sensing mechanisms. N Engl J Med 353, 2042–55.CrossRefGoogle Scholar
  40. Wells, P.G., Moore, G.W., Rabin, D., Wilkinson, G.R., Oates, J.A. and Stacpoole, P.W. (1980). Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans. Diabetologia 19, 109–13.CrossRefGoogle Scholar
  41. Zamzami, N. and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2, 67–71.CrossRefGoogle Scholar
  42. Zhou, S., Kachhap, S. and Singh, K.K. (2003). Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis 18, 287–92.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Alberta Hospital – MedicineEdmontonCanada

Personalised recommendations