Advertisement

Mitochondria and Oncocytomas

  • J. Lima
  • V. Máximo
  • P. Soares
  • R. Portugal
  • S. Guimarães
  • M. Sobrinho-Simões
Chapter

Oncocytic Tumors and Oncocytomas

The designation oncocytoma was coined by Hamperl (1962) to describe a tumor composed by “oncocytes.” Oncocyte is a descriptive term for a neoplastic or nonneoplastic cell stuffed with mitochondria that give a grainy, eosinophilic appearance to its swollen cytoplasm. In many instances, oxyphilic transformation is used as a synonym for oncocytic transformation, thus leading to the utilization of oxyphilic tumor as a synonym for oncocytic tumor or oncocytoma. In the thyroid, other terms are used: Hürthle cell transformation and Hürthle cell tumors (Nesland et al.1985; Sobrinho-Simoes et al.1985,2005). Finally, there are, in some organs, tumors composed by oncocytes that carry specific designations (e.g. Warthin's tumor of the salivary glands).

In this chapter we will only focus on neoplastic oncocytes, i.e., on the tumors – oncocytomas – composed by such cells, but they may also occur in several “normal” organs of elderly patients (e.g. parathyroid...

Keywords

Parathyroid Adenoma Renal Cell Carcinoma Renal Oncocytomas OXPHOS Complex Oncocytic Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alchanati, I., Nallar, S. C., Sun, P., Gao, L., Hu, J., Stein, A., Yakirevich, E., Konforty, D., Alroy, I., Zhao, X., Reddy, S. P., Resnick, M. B., and Kalvakolanu, D. V. 2006. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene 25:7138–7147.CrossRefPubMedGoogle Scholar
  2. Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R., and Kalvakolanu, D. V. 2000. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J. Biol. Chem. 275:33416–33426.CrossRefPubMedGoogle Scholar
  3. Apel R. L. and Asa S. L. 2002. The parathyroid glands. In LiVolsi and V. Asa S. L. Endocrine Pathology, Churchill Livingstone.Philadelphia, PA: 103–137.Google Scholar
  4. Attardi, G., Yoneda, M., and Chomyn, A. 1995. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta 1271:241–248.PubMedGoogle Scholar
  5. Ballinger, S. W., Bouder, T. G., Davies, G. S., Judice, S. A., Nicklas, J. A., and Albertini, R. J. 1996. Mitochondrial genome damage associated with cigarette smoking. Cancer Res. 56:5692–5697.PubMedGoogle Scholar
  6. Baris, O., Savagner, F., Nasser, V., Loriod, B., Granjeaud, S., Guyetant, S., Franc, B., Rodien, P., Rohmer, V., Bertucci, F., Birnbaum, D., Malthiery, Y., Reynier, P., and Houlgatte, R. 2004. Transcriptional profiling reveals coordinated up-regulation of oxidative metabolism genes in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab. 89:994–1005.CrossRefPubMedGoogle Scholar
  7. Bonora, E., Evangelisti, C., Bonichon, F., Tallini, G., and Romeo, G. 2006a. Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas. Br. J. Cancer 95:1529–1536.CrossRefGoogle Scholar
  8. Bonora, E., Porcelli, A. M., Gasparre, G., Biondi, A., Ghelli, A., Carelli, V., Baracca, A., Tallini, G., Martinuzzi, A., Lenaz, G., Rugolo, M., and Romeo, G. 2006b. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66:6087–6096.CrossRefGoogle Scholar
  9. Brooks, J. D., Marshall, F. F., Isaacs, W. B., and Johns, D. R. 1999. Absence of HinfI Restriction Abnormalities in Renal Oncocytoma Mitochondrial DNA. Mol. Urol. 3:1–3.PubMedGoogle Scholar
  10. Canzian, F., Amati, P., Harach, H. R., Kraimps, J. L., Lesueur, F., Barbier, J., Levillain, P., Romeo, G., and Bonneau, D. 1998. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am. J. Hum. Genet. 63:1743–1748.CrossRefPubMedGoogle Scholar
  11. Czarnecka, A. M., Golik, P., and Bartnik, E. 2006. Mitochondrial DNA mutations in human neoplasia. J. Appl.Genet. 47:67–78.PubMedGoogle Scholar
  12. Dai, J. G., Xiao, Y. B., Min, J. X., Zhang, G. Q., Yao, K., and Zhou, R. J. 2006. Mitochondrial DNA 4977 BP deletion mutations in lung carcinoma. Ind. J. Cancer 43:20–25.CrossRefGoogle Scholar
  13. DeLellis, R. A., Lloyd, R. V., Heitz, P. U., and Eng, C. 2004. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. IARC press.Lyon:Google Scholar
  14. Eng, C., Kiuru, M., Fernandez, M. J., and Aaltonen, L. A. 2003. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer. 3:193–202.CrossRefPubMedGoogle Scholar
  15. Erickson, L. A., Jin, L., Papotti, M., and Lloyd, R. V. 2005. Oxyphil parathyroid carcinomas: a clinicopathologic and immunohistochemical study of 10 cases. Am. J. Surg. Pathol. 26:344–349.CrossRefGoogle Scholar
  16. Farrand, K., Delahunt, B., Wang, X. L., McIver, B., Hay, I. D., Goellner, J. R., Eberhardt, N. L., and Grebe, S. K. 2002. High resolution loss of heterozygosity mapping of 17p13 in thyroid cancer: Hurthle cell carcinomas exhibit a small 411-kilobase common region of allelic imbalance, probably containing a novel tumor suppressor gene. J. Clin. Endocrinol. Metab. 87:4715–4721.CrossRefPubMedGoogle Scholar
  17. Frisk, T., Kytola, S., Wallin, G., Zedenius, J., and Larsson, C. 1999. Low frequency of numerical chromosomal aberrations in follicular thyroid tumors detected by comparative genomic hybridization. Genes Chromosomes Cancer 25:349–353.CrossRefPubMedGoogle Scholar
  18. Gasparre, G., Porcelli, A. M., Bonora, E., Pennisi, L. F., Toller, M., Iommarini, L., Ghelli, A., Moretti, M., Betts, C. M., Martinelli, G. M., Ceroni, A. R., Curcio, F., Carelli, V., Rugolo, M., Tallini, G., and Romeo, G. 2007. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Cancer Res. 104:9001–9006.Google Scholar
  19. Giorgadze, T., Stratton, B., Baloch, Z. W., and LiVolsi, V. A. 2004. Oncocytic parathyroid adenoma: problem in cytological diagnosis. Diagn. Mol. Pathol. 31:276–280.Google Scholar
  20. Gottlieb, E. and Tomlinson, I. P. 2005. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5:857–866.CrossRefPubMedGoogle Scholar
  21. Hamperl, H. 1962. Benign and malignant oncocytoma. Cancer. 15:1019–1027.CrossRefPubMedGoogle Scholar
  22. Heddi, A., Faure-Vigny, H., Wallace, D. C., and Stepien, G. 1996. Coordinate expression of nuclear and mitochondrial genes involved in energy production in carcinoma and oncocytoma. Biochim. Biophys. Acta. 1316:203–209.PubMedGoogle Scholar
  23. Jacques, C., Baris, O., Prunier-Mirebeau, D., Savagner, F., Rodien, P., Rohmer, V., Franc, B., Guyetant, S., Malthiery, Y., and Reynier, P. 2005. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab. 90:2314–2320.CrossRefPubMedGoogle Scholar
  24. Kepes, J. J. 1983. Oncocytic transformation of choroid plexus epithelium. Acta Neuropathol. 63:145–148.CrossRefGoogle Scholar
  25. Lewis, P. D., Baxter, P., Paul Griffiths, A., Parry, J. M., and Skibinski, D. O. 2000. Detection of damage to the mitochondrial genome in the oncocytic cells of Warthin's tumour. J. Pathol. 191:274–281.CrossRefPubMedGoogle Scholar
  26. Lewis, P. D., Fradley, S. R., Griffiths, J. R., Baxter, P. W., and Parry, J. M. 2002. Mitochondrial DNA mutations in the parotid gland of cigarette smokers and non-smokers. Mutat. Res. 518:47–54.PubMedGoogle Scholar
  27. Lindal, S., Lund, I., Torbergsen, T., Aasly, J., Mellgren, S. I., Borud, O., and Monstad, P. 1992. Mitochondrial diseases and myopathies: a series of muscle biopsy specimens with ultrastructural changes in the mitochondria. Ultrastruct. Pathol. 16:263–275.CrossRefPubMedGoogle Scholar
  28. Maximo, V. and Sobrinho-Simoes, M. 2000a. Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch. 437:107–115.CrossRefGoogle Scholar
  29. Maximo, V. and Sobrinho-Simoes, M. 2000b. Mitochondrial DNA ‘common’ deletion in Hurthle cell lesions of the thyroid. J. Pathol. 192:561–562.CrossRefGoogle Scholar
  30. Maximo, V., Sores, P., Rocha, A. S., and Sobrinho-Simoes, M. 1998. The common deletion of mitochondrial DNA is found in goiters and thyroid tumors with and without oxyphil cell change. Ultrastruct. Pathol. 22:271–273.CrossRefPubMedGoogle Scholar
  31. Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J., and Sobrinho-Simoes, M. 2002. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol. 160:1857–1865.PubMedGoogle Scholar
  32. Maximo, V., Preto, A., Crespo, A., Rocha, A. S., Machado, J. C., Soares, P., and Sobrinho-Simoes, M. 2004. Core I gene is overexpressed in Hurthle and non-Hurthle cell microfollicular adenomas and follicular carcinomas of the thyroid. BMC Cancer 25:4–12.Google Scholar
  33. Maximo, V., Botelho, T., Capela, J., Soares, P., Lima, J., Taveira, A., Amaro, T., Barbosa, A. P., Preto, A., Harach, H. R., Williams, D., and Sobrinho-Simoes, M. 2005a. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer 92:1892–1898.CrossRefGoogle Scholar
  34. Maximo, V., Lima, J., Soares, P., Botelho, T., Gomes, L., and Sobrinho-Simoes, M. 2005b. Mitochondrial D-Loop instability in thyroid tumours is not a marker of malignancy. Mitochondrion 5:333–340.CrossRefGoogle Scholar
  35. MITOMAP: A Human Mitochondrial Genome Database, 2007.http://www.mitomap.org..
  36. Muller-Hocker, J. 1992. Random cytochrome-C-oxidase deficiency of oxyphil cell nodules in the parathyroid gland. A mitochondrial cytopathy related to cell ageing? Pathol. Res. Pract. 188:701–706.Google Scholar
  37. Muller-Hocker, J., Aust, D., Napiwotsky, J., Münscher, C., Link, T. A., Seibel, P., Schneeweiss, S. G., and Kadenbach, B. 1996. Defects of the respiratory chain in oxyphil and chief cells of the normal parathyroid and in hyperfunction. Hum. Pathol. 27:532–541.CrossRefPubMedGoogle Scholar
  38. Nesland, J. M., Sobrinho-Simoes, M. A., Holm, R., Sambade, M. C., and Johannessen, J. V. 1985. Hurthle-cell lesions of the thyroid: a combined study using transmission electron microscopy, scanning electron microscopy, and immunocytochemistry. Ultrastruct. Pathol. 8:269–290.CrossRefPubMedGoogle Scholar
  39. Ohama, E. and Ikuta, F. 1987. Involvement of choroid plexus in mitochondrial encephalomyopathy (MELAS). Acta Neuropathol. 75:1–7.CrossRefPubMedGoogle Scholar
  40. Pavlovich, C. P., Walther, M. M., Eyler, R. A., Hewitt, S. M., Zbar, B., Linehan, W. M., and Merino, M. J. 2002. Renal tumors in the Birt–Hogg–Dubé syndrome. Am. J. Surg. Pathol. 26:1542–1552.CrossRefPubMedGoogle Scholar
  41. Sanchez-Cespedes, M., Parrella, P., Nomoto, S., Cohen, D., Xiao, Y., Esteller, M., Jeronimo, C., Jordan, R. C., Nicol, T., Koch, W. M., Schoenberg, M., Mazzarelli, P., Fazio, V. M., and Sidransky, D. 2001. Identification of a mononucleotide repeat as a major target for mitochondrial DNA alterations in human tumors. Cancer Res. 61:7015–7019.PubMedGoogle Scholar
  42. Savagner, F., Franc, B., Guyetant, S., Rodien, P., Reynier, P., and Malthiery, Y. 2001. Defective mitochondrial ATP synthesis in oxyphilic thyroid tumors. J. Clin. Endocrinol. Metab. 86:4920–4925.CrossRefPubMedGoogle Scholar
  43. Sengers, R. C., Stadhouders, A. M., and Trijbels, J. M. 1984. Mitochondrial myopathies. Clinical, morphological and biochemical aspects. Eur. J. Pediatr. 141:192–207.CrossRefPubMedGoogle Scholar
  44. Simonnet, H., Alazard, N., Gallou, C., Béroud, C., Demont, J., Bouvier, R., Schägger, H., and Godinot, C. 2002. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768.CrossRefPubMedGoogle Scholar
  45. Simonnet, H., Demont, J., Pfeiffer, K., Guenaneche, L., Bouvier, R., Brandt, U., Schagger, H., and Godinot, C. 2003. Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24:1461–1466.CrossRefPubMedGoogle Scholar
  46. Sobrinho-Simoes, M., Maximo, V., Castro, I. V., Fonseca, E., Soares, P., Garcia-Rostan, G., and Oliveira, M. C. 2005. Hurthle (oncocytic) cell tumors of thyroid: etiopathogenesis, diagnosis and clinical significance. Int. J. Surg. Pathol. 13:29–35.CrossRefPubMedGoogle Scholar
  47. Sobrinho-Simoes, M. A., Nesland, J. M., Holm, R., Sambade, M. C., and Johannessen, J. V. 1985. Hurthle cell and mitochondrion-rich papillary carcinomas of the thyroid gland: an ultrastructural and immunocytochemical study. Ultrastruct. Pathol. 8:131–142.CrossRefPubMedGoogle Scholar
  48. Tallini, G., Hsueh, A., Liu, S., Garcia-Rostan, G., Speicher, M. S., and Ward, D. C. 1999. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hürthle cell) neoplasms detected by comparative genomic hybridization. Lab. Invest. 79:547–555.PubMedGoogle Scholar
  49. Tallini, G., Ladanyi, M., Rosai, J., and Jhanwar, S. C. 1994. Analysis of nuclear and mitochondrial DNA alterations in thyroid and renal oncocytic tumors. Cytoget. Cell Genet. 66:253–259.CrossRefGoogle Scholar
  50. Tanji, K., Schon, E. A., DiMauro, S., and Bonilla, E. 2000. Kearns-sayre syndrome: oncocytic transformation of choroid plexus epithelium. J. Neurol. Sci. 178:29–36.CrossRefPubMedGoogle Scholar
  51. Taylor, R. W. and Turnbull, D. M. 2005. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6:389–402.CrossRefPubMedGoogle Scholar
  52. Wada, N., Duh, Q. Y., Miura, D., Brunaud, L., Wong, M. G., and Clark, O. H. 2002. Chromosomal aberrations by comparative genomic hybridization in hürthle cell thyroid carcinomas are associated with tumor recurrence. J. Clin. Endocrinol. Metab. 87:4595–4601.CrossRefPubMedGoogle Scholar
  53. Welter, C., Kovacs, G., Seitz, G., and Blin, N. 1989. Alteration of mitochondrial DNA in human oncocytomas. Genes Chromosomes Cancer 1:79–82.CrossRefPubMedGoogle Scholar
  54. Zambrano, N. R., Lubensky, I. A., Merino, M. J., Linehan, W. M., and Walther, M. M. 1999. Histopathology and molecular genetics of renal tumors toward unification of a classification system. J. Urol. 162:1246–1258.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • J. Lima
    • 1
  • V. Máximo
    • 1
    • 2
  • P. Soares
    • 1
    • 2
  • R. Portugal
    • 3
  • S. Guimarães
    • 3
  • M. Sobrinho-Simões
    • 1
    • 2
    • 3
  1. 1.Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
  2. 2.Department of PathologyMedical Faculty of University of PortoPortoPortugal
  3. 3.Department of PathologyHospital S. JoãoPortoPortugal

Personalised recommendations