Advertisement

Mitochondria and Cancer

  • Kjerstin M. Owens
  • J. S. Modica-Napolitano
  • Keshav K. Singh
Chapter

Introduction

Mitochondria have been an area of scientific study for more than 100 years (Table 1). It was in the early twentieth century that Otto Warburg first described differences in the mitochondria of tumor vs. normal cells. He observed that tumor cells had an increased rate of aerobic glycolysis compared with normal cells. He hypothesized that this increase was due to the impairment in the respiratory capacity of tumor cells (Warburg 1930, 1956). This was the first of several notable differences observed between the mitochondria of normal and transformed cells that were subsequently discovered (reviewed in Weinhouse 1955; Pedersen 1978; Carafoli 1980; Modica-Napolitano and Singh 2002, 2004; Modica-Napolitano et al. 2007). The physical structure, composition, and function of mitochondria differ greatly from that of tumor and normal cells. For example, the mitochondria of many rapidly growing tumors are fewer in number, smaller, and have fewer cristae than do mitochondria from slowly...

Keywords

Mitochondrial Genome Papillary Thyroid Carcinoma Electron Transport Chain Increase Reactive Oxygen Species Production Mitochondrial Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Studies in our laboratory were supported by NIH grants R01 CA121904, R01 CA13655, and R01 CA116430. We thank Ms. Paula Jones for editing this manuscript.

References

  1. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121–126PubMedCrossRefGoogle Scholar
  2. Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., Myers, E.N., Richard, C.W. III, Cornelisse, C.J., Devilee, P., Devlin, B. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851PubMedCrossRefGoogle Scholar
  3. Beurdeley-Thomas, A., Miccoli, L., Oudard, S., Dutrillaux, B., and Poupon, M.F. 2000. The peripheral benzodiazepine receptors: A review. J. Neurooncol. 46:45–56PubMedCrossRefGoogle Scholar
  4. Bianchi, N.O., Bianchi, M.S., Richard, S.M. 2001. Mitochondrial genome instability in human cancers. Mutat. Res. 488:9–23PubMedCrossRefGoogle Scholar
  5. Boddapati, S.V., Tongcharoensirikul, P., Hanson, R.N., D’Souza, G.G., Torchilin, V.P., Weissig, V. 2005. Mitochondriotropic liposomes. J. Liposome Res. 15:49–58PubMedGoogle Scholar
  6. Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T., Lopaschuk, G.D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C.J., Andrade, M.A., Thebaud, B., Michelakis, E.D. 2007. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11:37–51.PubMedCrossRefGoogle Scholar
  7. Borutaite, V., Budriunaite, A., and Brown, G.C. 2000. Reversal of nitric oxide-, peroxynitrite- andS-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim. Biophys. Acta 1459:405–412PubMedCrossRefGoogle Scholar
  8. Boveris, A., and Chance, B. 1973. The mitochondrial generation of hydrogen peroxide. Biochem. J. 134:707–716PubMedGoogle Scholar
  9. Brand, M.D., Affouritt, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L., and Parker, N. 2004. Free Radic. Biol. Med. 37:755–767PubMedCrossRefGoogle Scholar
  10. Brimmell, M., Mendiola, R., Mangion, J., and Packham, G. 1998. BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 16:1803–1812PubMedCrossRefGoogle Scholar
  11. Brookes, P.S., and Darley-Usmar, V.M. 2002. Hypothesis: The mitochondrial NO signalling pathway, and the transduction from nitrosative to oxidative cell signals: An alternative function for cytochromec oxidase. Free Radic. Biol. Med. 32:370–374PubMedCrossRefGoogle Scholar
  12. Burwell, L.S., Nadtochiy, S.M., Tompkins, A.J., Young, S., and Brookes, P.S. 2006. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 394:627–634PubMedCrossRefGoogle Scholar
  13. Campbell, A.M., and Chan, S.H.P. 2007. The voltage dependent anion channel affects mitochondrial cholesterol distribution and function. Arch. Biochem. Biophys. 466:203–210.PubMedCrossRefGoogle Scholar
  14. Canter, J.A., Kallianpur, A.R., Parl, F.F., Millikan, R.C. 2005. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res. 65:8028–8033PubMedGoogle Scholar
  15. Capuano, F., Guerrieri, F., and Papa, S. 1997. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J. Bioenerg. Biomembr. 29:379–384PubMedCrossRefGoogle Scholar
  16. Carafoli, E. 1980. Mitochondria and disease. Molec. Aspects Med. 3:295–429CrossRefGoogle Scholar
  17. Cejas, P., Casado, E., Belda-Iniesta, C., De Castro, J., Espinosa, E., Redondo, A., Sereno, M., Garcia-Cabezas, M.A., Vara, J.A.F., Domingues-Caceres, A., Rosario, P., and Gonzalez-Baron, M. 2004. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer. Cancer Causes Control 15:707–719PubMedCrossRefGoogle Scholar
  18. Chan, S.H., and Barbour, R.L. 1983. Adenine nucleotide transport in hepatoma mitochondria. Characterization of factors influencing the kinetics of ADP and ATP uptake. Biochim. Biophys. Acta 723:104–113PubMedCrossRefGoogle Scholar
  19. Chatterjee, A., Mambo, E., Sidransky, D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674.PubMedCrossRefGoogle Scholar
  20. Chen, Y.R., Chen, C.L., Pfeiffer, D.R., and Zweier, J.L. 2007a. Mitochondrial complex II in the post-ischemic heart: Oxidative injury and the role of protein S-glutathionylation. J. Biol.Chem. 282:32640–32654CrossRefGoogle Scholar
  21. Chen, C.L., Zhang, L., Yeh, A., Chen, C.A., Green-Church, K.B., Zweier, J.L., and Chen, Y.R. 2007b. Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase. Biochemistry 46:5754–5765CrossRefGoogle Scholar
  22. Christians, F.C., Newcomb, T.G., and Loeb, L.A. 1995. Potential sources of multiple mutations in human cancers. Prev. Med. 24:329–332PubMedCrossRefGoogle Scholar
  23. Chu, F.F., Doroshow, J.H., and Esworthy, R.S. 1993. J. Biol. Chem. 4:2571–2576Google Scholar
  24. Chu, F.F., Esworthy, R.S., and Doroshow, J.H. 2004. Free Radic. Biol. Med. 36:1481–1495PubMedCrossRefGoogle Scholar
  25. Cleeter, M.W.J., Cooper, J.M., Darley-Usmar, V.M., Moncada, S., and Schapira, A.H.V. 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett. 345:50–54PubMedCrossRefGoogle Scholar
  26. Clementi, E., Brown, G.C., Feelish, M., and Moncada, S. 1998. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Nat. Acad. Sci. USA 95:7631–7636PubMedCrossRefGoogle Scholar
  27. Covello, K.L., and Simon, M.C. 2004. HIFs, hypoxia, and vascular development. Curr. Topics Dev. Biol. 62:37–54CrossRefGoogle Scholar
  28. Coleman, M.C., Asbury, C.R., Daniels, D., Du, J., Aykin-Burns, N., Smith, B.J., Li, L., Spitz, D.R., Cullen, J.J. 2008. 2-Deoxy-d-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic. Biol. Med. 44:322–331PubMedCrossRefGoogle Scholar
  29. Costantini, P., Jacotot, E., Decaudin, D., Kroemer, G. 2000. Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst. 92:1042–1053PubMedCrossRefGoogle Scholar
  30. Dakubo, G.D., Parr, R.L., Costello, L.C., Franklin, R.B., Thayer, R.E. 2006. Altered metabolism and mitochondrial genome in prostate cancer. J. Clin. Pathol. 59:10–16PubMedCrossRefGoogle Scholar
  31. De Marzo, A.M., Marchi, V.L., Epstein, J.I., Nelson, W.G. 1999. Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am. J. Pathol. 155:1985–1992PubMedGoogle Scholar
  32. Desouki, M.M., Kulawiec, M., Bansal, S., Das, G.M., Singh, K.K. 2005. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol. Ther. 4:1367–1373PubMedCrossRefGoogle Scholar
  33. Dougherty, T.J., Weishaupt, K.R., and Boyle, D.G. 1985. Photodynamic Sensitizers. J.B. Lipincott, Philadelphia, PA, USAGoogle Scholar
  34. Douwes Dekker, P.B., Hogendoorn, P.C.W., Kuipers-Dijkshoorn, N., Prins, F.A., van Duinen, S.G., Taschner, P.E.M., van der Mey, A.G.L., and Cornelisse, C.J. 2003. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Path. 201:480–486PubMedCrossRefGoogle Scholar
  35. D’Souza, G.G., Boddapati, S.V., Weissig, V. 2005. Mitochondrial leader sequence—Plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5:352–358PubMedCrossRefGoogle Scholar
  36. Emerit, I. 1994. Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogensic factors in carcinogenesis. Free Radic. Biol. Med. 16:99–109PubMedCrossRefGoogle Scholar
  37. Faure Vigny, H., Heddi, A., Giraud, S., Chautard, D., and Stepien, G. 1996. Expression of oxidative phosphorylation genes in renal tumors and tumoral cell lines. Mol. Carcinog. 16:165–172PubMedCrossRefGoogle Scholar
  38. Fliss, M.S., Usadel, H., Caballero, O.L., Wu, L., Buta, M.R., Eleff, S.M., Jen, J., Sidransky, D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019PubMedCrossRefGoogle Scholar
  39. Freedland, S.J., Mavropoulos, J., Wang, A., Darshan, M., Demark-Wahnefried, W., Aronson, W.J., Cohen, P., Hwang, D., Peterson, B., Fields, T., Pizzo, S.V., Isaacs, W.B. 2008. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68:11–19PubMedCrossRefGoogle Scholar
  40. Galiegue, S., Jbilo, O., Combes, T., Bribes, E., Carayon, P., Le Fur, G., and Casellas, P. 1999. Cloning and characterization of PRAX-1. A new protein that specifically interacts with the peripheral benzodiazepine receptor. J. Biol. Chem. 274:2938–2952PubMedCrossRefGoogle Scholar
  41. Gao, N., Ding, M., Zheng, J.Z., Zhang, Z., Leonard, S.S., Liu, K.J., Shi, X., Jiang, B.H. 2002. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J. Biol. Chem. 277:31963–31971PubMedCrossRefGoogle Scholar
  42. Gibson, B.W. 2005. The human mitochondrial proteome: Oxidative stress, protein modifications and oxidative phosphorylation. Int. J. Biochem. Cell Biol. 37:927–934PubMedCrossRefGoogle Scholar
  43. Gimenez-Roqueplo, A.P., Favier, J., Rustin, P., Mourad, J.J., Plouin, P.F., Corvol, P., Rotig, A., and Jeunemaitre, X. 2001. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activiy of Complex II in the mitochondrial respiratory chain and activities the hypoxia pathway. Am. J. Hum. Genet. 69:1186–1197PubMedCrossRefGoogle Scholar
  44. Giraud, S., Bonod-Bidaud, C., Wesolowski-Louvel, M., and Stepien, G. 1998. Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J. Mol. Biol. 281:409–418PubMedCrossRefGoogle Scholar
  45. Gottlieb, E., and Tomlinson, I.P.M. 2005. Mitochondrial tumour suppressors: A genetic and biochemical update. Nat. Rev. Cancer 5:857–866PubMedCrossRefGoogle Scholar
  46. Gray, M.W. 1992. The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141:233–357PubMedCrossRefGoogle Scholar
  47. Green, D.E., Loomis, W.F., and Auerbach, V.H. 1948. Studies on the cyclophorase system. I. The complete oxidation of pyruvic acid to carbon dioxide and water. J. Biol. Chem. 172:389–403PubMedGoogle Scholar
  48. Grossman, L.I., and Shoubridge, E.A. 1996. Mitochondrial genetics and human disease. Bioessays 18:983–991PubMedCrossRefGoogle Scholar
  49. Heerdt, B.G., Halsey, H.K., Lipkin, M., and Augenlicht, L.H. 1990. Expression of mitochondrial cytochromec oxidase in human colonic cell differentiation, transformation, and risk for colonic cancer. Cancer Res. 50:1596–1600PubMedGoogle Scholar
  50. Herrmann, P.C., Gillespie, J.W., Charboneau, L., Bischel, V.E., Paweletz, C.P., Calvert, V.S., Kohn, E.C., Emmert-Buck, M.R., Liotta, L.A., and Petricoin, E.F. 2003. Mitochondrial proteome: Altered cytochromec oxidase subunit levels in prostate cancer. Proteomics 3:1801–1810PubMedCrossRefGoogle Scholar
  51. Ishii, T., Yasuda, K., Akatsuka, A., Hino, O., Hartman, P.S., and Ishii, N. 2005. A mutation in the SDHC gene of Complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 65:203–209PubMedGoogle Scholar
  52. Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y., Hayashi, J. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 320:661–664PubMedCrossRefGoogle Scholar
  53. Jackson, A.L., and Loeb, L.A. 2001. The contribution of endogenous sources of DNA damage to the mutliple mutations in cancer. Mutat. Res. 477:7–21PubMedGoogle Scholar
  54. Jakupciak, J.P., Wang, W., Markowitz, M.E., Ally, D., Coble, M., Srivastava, S., Maitra, A., Barker, P.E., Sidransky, D., O'Connell, C.D. 2005. Mitochondrial DNA as a cancer biomarker. J Mol. Diagn. 7:258–267PubMedGoogle Scholar
  55. Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C.M., Clevenger, W. 2003. Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. J. Biol. Chem. 278:9823–9830PubMedCrossRefGoogle Scholar
  56. Jiang, W.W., Masayesva, B., Zahurak, M., Carvalho, A.L., Rosenbaum, E., Mambo, E., Zhou, S., Minhas, K., Benoit, N., Westra, W.H., Alberg, A., Sidransky, D., Koch, W., Califano, J. 2005. Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin Cancer Res 11:2486–2491PubMedCrossRefGoogle Scholar
  57. Johns, D.R. 1995. Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. New Engl. J. Med. 333:638–644PubMedCrossRefGoogle Scholar
  58. Johnson, L.V., Walsh, M.L., Bockus, B.J., Chen, L.B. 1981. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol. 88:526–535PubMedCrossRefGoogle Scholar
  59. Klein, E.A., Lipman, S.M., Thompson, I.M., Goddman, P.J., Albanes, D., Taylor, P.R., and Coltman, C. 2003. World J. Urol. 21:21–27PubMedGoogle Scholar
  60. Kono, Y., and Fridovich, I. 1982. Superoxide radical inhibits catalase. J. Biol. Chem. 257:5751–5754PubMedGoogle Scholar
  61. Kowaltowski, A.L., and Vercesi, A.E. 1998. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26:463–471CrossRefGoogle Scholar
  62. Kroemer, G. 1997. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat. Med. 3:614–620PubMedCrossRefGoogle Scholar
  63. Kroemer, G., Galluzzi, L., and Brenner, C. 2007. Mitochondrial membrane permealization in cell death. Physiol. Rev. 87:99–163PubMedCrossRefGoogle Scholar
  64. Kulawiec, M., Singh, K.K. 2008. In preparationGoogle Scholar
  65. Lee, H.C., Yin, P.H., Lin, J.C., Wu, C.C., Chen, C.Y., Wu, C.W., Chi, C.W., Tam, T.N., Wei, Y.H. 2005. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann. NY Acad. Sci. 1042:109–122In preparationPubMedCrossRefGoogle Scholar
  66. Lewis, W., Day, B.J., Kohler, J.J., Hosseini, S.H., Chan, S.S., Green, E.C., Haase, C.P., Keebaugh, E.S., Long, R., Ludaway, T., Russ, R., Steltzer, J., Tioleco, N., Santoianni, R., Copeland, W.C. 2007. Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest. 87:326–335PubMedGoogle Scholar
  67. Lin, X., Zhang, F., Bradbury, C.M., Kaushal, A., Li, L., Spitz, D.R., Aft, R.L., Gius, D. 2003. 2-Deoxy-d-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res. 63:3413–3417PubMedGoogle Scholar
  68. Lievre, A., Chapusot, C., Bouvier, A.M., Zinzindohoue, F., Piard, F., Roignot, P., Arnould, L., Beaune, P., Faivre, J., Laurent-Puig, P. 2005. Clinical value of mitochondrial mutations in colorectal cancer. J. Clin. Oncol. 23:3517–3525PubMedCrossRefGoogle Scholar
  69. Liu, C.S., Tsai, C.S., Kuo, C.L., Chen, H.W., Lii, C.K., Ma, Y.S., and Wei, Y.H. 2003. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 37:307–1317CrossRefGoogle Scholar
  70. Luciakova, K., and Kuzela, S. 1992. Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur. J. Biochem. 205:1187–1193PubMedCrossRefGoogle Scholar
  71. Mambo, E., Chatterjee, A., Xing, M., Tallini, G., Haugen, B.R., Yeung, S.C., Sukumar, S., Sidransky, D. 2005. Tumor-specific changes in mtDNA content in human cancer. Int. J. Cancer 116:920–924PubMedCrossRefGoogle Scholar
  72. Marnett, L.J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424:83PubMedGoogle Scholar
  73. Martinez-Cayuela, M. 1995. Oxygen free radicals and human disease. Biochimie 77:47–161CrossRefGoogle Scholar
  74. Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F., Hwang, P.M. 2006. p53 regulates mitochondrial respiration. Science 312:1650–1653PubMedCrossRefGoogle Scholar
  75. McCord, J.M., and Fridovich, I. 1969. An enzymtic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055PubMedGoogle Scholar
  76. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148PubMedCrossRefGoogle Scholar
  77. Modica-Napolitano, J.S., and Aprille, J.R. 1987. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 47:4361–4365PubMedGoogle Scholar
  78. Modica-Napolitano, J.S., Joyal, J.L., Ara, G., Oseroff, A.R., Aprille, J.R. 1990. Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Cancer Res. 50:7876–7881PubMedGoogle Scholar
  79. Modica-Napolitano, J.S., Koya, K., Weisberg, E., Brunelli, B.T., Li, Y., Chen, L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56:544–550PubMedGoogle Scholar
  80. Modica-Napolitano, J.S., Kulawiec, M., and Singh, K.K. 2007. Mitochondria and human cancer. Curr. Molec. Med. 7:1–11Google Scholar
  81. Modica-Napolitano, J.S., and Touma, S.E. 2000. Functional differences in mitochondrial enzymes from normal epithelial and carcinoma cells. In Mitochondrial Dysfunction in Pathogenesis, A Keystone Symposium, 15–20 January, Santa Fe, NM, USA, Keystone Symposia, Silverthorne, CO, USA64.Google Scholar
  82. Modica-Napolitano, J.S., and Singh, K.K. 2002. Mitochondria as targets for detection and treatment of cancer. Exp. Rev. Mol. Med. 11 April,http://www.expertreviews.org/02004453h.htm
  83. Modica-Napolitano, J., and Singh, K.K. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762PubMedCrossRefGoogle Scholar
  84. Nair, J., Barbin, A., Velic, I., and Bartsch, H. 1999. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 424:59PubMedGoogle Scholar
  85. Nelson, D.L., and Cox, M.M. 2000. Lehninger Principles of Biochemistry. Worth PublishersGoogle Scholar
  86. Neumann, H.P., Pawlu, C., Peczkowaska, M., Bausch, B., McWinney, S.R., Muresan, M., Cuchta, M., Franke, G., Klisch, J., Bley, T.A., et al. 2004. Distinct clinical features of paraglioma syndromes associated with SDHB and SDHD gene mutations. J. Am. Med. Assoc. 292:943–951CrossRefGoogle Scholar
  87. Nishikawa, M., Oshitani, N., Matsumoto, T., Nishigami, T., Arakawa, T., Inoue, M. 2005. Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis. Br. J. Cancer 93:331–337PubMedCrossRefGoogle Scholar
  88. Oberley, L.W. 2001. Antioxidant enzyme levels as a function of growth state in cell culture. Antioxidants Redox Signall. 3:461–472CrossRefGoogle Scholar
  89. Oberley, L.W., and Buettner, G.R. 1979. Role of superoxide dismutase in cancer: A review. Cancer Res. 39:1141–1149PubMedGoogle Scholar
  90. O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A.P., Brdiczka, D., and Wallimann, T. 1997. The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 414:253–257PubMedCrossRefGoogle Scholar
  91. Otto, C., Kaemmerer, U., Illert, B., Muehling, B., Pfetzer, N., Wittig, R., Voelker, H.U., Thiede, A., Coy, J.F. 2008. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8:122PubMedCrossRefGoogle Scholar
  92. Pedersen, P.L., and Morris, H.P. 1974. Uncoupler-stimulated adenosine triphosphatase activity. Deficiency in intact mitochondria from Morris hepatomas and ascites tumor cells. J. Biol. Chem. 249:3327–3334PubMedGoogle Scholar
  93. Pedersen, P.L. 1978. Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22:190–274PubMedGoogle Scholar
  94. Petit, P.X., and Kroemer, G. 1998. Mitochondrial regulation of apoptosis. In Singh, K.K., ed., Mitochondrial DNA Mutations in Aging, Disease and Cancer Springer-Verlag, Berlin, Germany147–165.Google Scholar
  95. Petros, J.A., Baumann, A.K., Ruiz-Pesini, E., Amin, M.B., Sun, C.Q., Hall, J., Lim, S., Issa, M.M., Flanders, W.D., Hosseini, S.H., Marshall, F.F., Wallace, D.C. 2005. mtDNA mutations increase tumorigenicity in prostate cancer. PNAS 102:719–724PubMedCrossRefGoogle Scholar
  96. Platz, E.A., and De Marzo, A.M. 2004. Epidemiology of inflammation and prostate cancer. J. Urol. 171:S36–40PubMedCrossRefGoogle Scholar
  97. Poderoso, J.J., Carreras, M.C., Lisdero, C., Riobo, N., Schopfer, F., and Boveris, A. 1996. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328:85–92PubMedCrossRefGoogle Scholar
  98. Pollard, P.J., Briere, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Mitchell, M., Olpin, S., Moat, S.J., Hargreaves, I.P., Heales, S.J., Chung, Y.L., Griffiths, J.R., Dalgleish, A., McGrath, J.A., Gleeson, M.J., Hodgson, S.V., Poulsom, R., Rustin, P., and Tomlinson, I.P.M. 2005. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germlineFH andSDH mutations. Hum. Mol. Genet.14:2231–2239PubMedCrossRefGoogle Scholar
  99. Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J.K., Markowitz, S.D., Trush, M.A., Kinzler, K.W., Vogelstein, B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours Nat. Genet. 20:291–293Google Scholar
  100. Powers, S.K. 1988. In Cerullo, L.J. ed., Application of Lasers in Neurosurgery Year Book Medical Publishers, Chicago, IL, USA137–155.Google Scholar
  101. Pugh, C.W., and Ratcliffe, P.J. 2003. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 9:677–684PubMedCrossRefGoogle Scholar
  102. Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J.C., and Perucho, M. 1997. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969PubMedCrossRefGoogle Scholar
  103. Reed, J.C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6PubMedCrossRefGoogle Scholar
  104. Reed, J.C. 1997. Double identity for proteins of the Bcl-2 family. Nature 387:773–776PubMedCrossRefGoogle Scholar
  105. Schatz, G. 1996. The protein import system of mitochondria. J. Biol. Chem. 271:31763–31766PubMedGoogle Scholar
  106. Schiemann, S., Schwirzke, M., Brunner, N., and Weidle, U.H. 1998. Molecular analysis of two mammary carcinoma cell lines at the transcriptional level as a model system for progression of breast cancer. Clin. Exp. Metast. 16:129–139CrossRefGoogle Scholar
  107. Selak, M.A., Armour, S.A., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B., and Gottieb, E. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell7:77–85PubMedCrossRefGoogle Scholar
  108. Sies, H. 1999. Free Radic. Biol. Med. 27:916–921PubMedCrossRefGoogle Scholar
  109. Simons, A.L., Ahmad, I.M., Mattson, D.M., Dornfeld, K.J., Spitz, D.R. 2007. 2-Deoxy-d-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 67:3364–3370PubMedCrossRefGoogle Scholar
  110. Singh, K.K. 1998. Mitochondrial DNA Mutations in Aging, Disease, and Cancer. Springer, New York, USAGoogle Scholar
  111. Singh, K.K. 2004. Mitochondria damage checkpoint in apoptosis and genome stability. FEMS Yeast Res. 5:127–132PubMedCrossRefGoogle Scholar
  112. Singh, K.K., Ayyasamy, V., Owens, K., Koul, M.S., Vuciji, M. 2008. Mutations in mitochondrial DNA polymerase γ associated with breast cancer. SubmittedGoogle Scholar
  113. Singh, K.K., Kulawiec, M., Still, I., Desouki, M.M., Geradts, J., Matsui, S. 2005. Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene 354:140–146PubMedCrossRefGoogle Scholar
  114. Singh, K.K., Russell, J., Sigala, B., Zhang, Y., Williams, J., Keshav, K.F. 1999. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18:6641–6646PubMedCrossRefGoogle Scholar
  115. Slane, B.G., Aykin-Burns, N., Smith, B., Kalen, A.K., Goswami, P.C., Domann, F.E., and Spitz, D.R. 2006. Mutation of succinate dehydrogenase subunit C results in increased O2. · , oxidative stress, and genomic instability. Cancer Res. 66:7615–7620PubMedCrossRefGoogle Scholar
  116. Spelbrink, J.N., Toivonen, J.M., Hakkaart, G.A., Kurkela, J.M., Cooper, H.M., Lehtinen, S.K., Lecrenier, N., Back, J.W., Speijer, D., Foury, F., Jacobs, H.T. 2000. In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem. 75:24818–24828.CrossRefGoogle Scholar
  117. Spitz, D.R., Azzam, E.I., Li, J.J., and Gius, D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifiying concept in stress response biology. Cancer Metast. 23:311–322CrossRefGoogle Scholar
  118. Sul, H.S., Shrago, E., Goldfarb, S., and Rose, F. 1979. Comparison of the adenine nucleotide translocase in hepatomas and rat liver mitochondria. Biochim. Biophys. Acta 551:148–155PubMedCrossRefGoogle Scholar
  119. Summerhayes, I.C., Lampidis, T.J., Bernal, S.D., Nadakavukaren, J.J., Nadakavukaren, K.K., Shepherd, E.L., and Chen, L.B. 1982. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc. Natl. Acad. Sci. USA 79:5292–5296PubMedCrossRefGoogle Scholar
  120. Summerhayes, I.C., Wong, D., and Chen, L.B. 1983. Effect of microtubules and intermediate filaments on mitochondrial distribution. J. Cell Sci. 61:87–105PubMedGoogle Scholar
  121. Sun, A.S., and Cederbaum, A.I. 1980. Oxidoreductase activities in normal rat liver, tumor-bearing rat liver, and hepatoma HC-252. Cancer Res. 40:4677–4681PubMedGoogle Scholar
  122. Sun, A.S., Sepkowitz, K., and Geller, S.A. 1981. A study of some mitochondrial and peroxisomal enzymes in human colonic adenocarcinoma. Lab. Invest. 44:13–17PubMedGoogle Scholar
  123. Suzuki, T., Spitz, D.R., Gandhi, P., Lin, H.Y., and Crawford, D.R. 2002. Mammalian resistance to oxidative stress: A comparative analysis. Gene Expression 10:179–191PubMedGoogle Scholar
  124. Taylor, E.R., Hurrell, F., Shannon, R.J., Lin, T.K., Hirst, J., and Murphy, M.P. 2003. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278:19603–19610PubMedCrossRefGoogle Scholar
  125. Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R.R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R.S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomaki, K., Hia, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., Aaltonen, L.A.; 2002. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genetics 30:406–410Multiple Leiomyoma Consortium.CrossRefGoogle Scholar
  126. Turrens, J.F. 1997. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17:3–8PubMedCrossRefGoogle Scholar
  127. Turrens, J.F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 522:335–344CrossRefGoogle Scholar
  128. Turrens, J.F., and Boveris, A. 1980. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–424PubMedGoogle Scholar
  129. Tzagoloff, A. 1982. Mitochondria. Plenum Press, New York, NY, USAGoogle Scholar
  130. Venturini, I., Zeneroli, M.L., Corsi, L., Avallone, R., Farina, F., Alho, H., Baraldi, C., Ferrarese, C., Pecora, N., Frigo, M., Ardizzone, G., Arrigo, A., Pellici, R., and Baraldi, M. 1998. Up-regulation of peripheral benzodiazepine receptor system in hepatocellular carcinoma. Life Sci. 63:1269–1280PubMedCrossRefGoogle Scholar
  131. Voet, D., Voet, J.G., and Pratt, C.W. 2002. Fundamentals of Biochemistry. John Wiley & Sons, Inc., New YorkGoogle Scholar
  132. Wang, Y., Liu, V.W., Xue, W.C., Tsang, P.C., Cheung, A.N., Ngan, H.Y. 2005. The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: A quantitative study using laser-captured microdissected tissues. Gynecol. Oncol. 98:104–110PubMedCrossRefGoogle Scholar
  133. Warburg, O. 1930. Metabolism of Tumors. Arnold Constable, London, UKGoogle Scholar
  134. Warburg, O. 1956. On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  135. Weinhouse, S. 1955. Oxidative metabolism of neoplastic tissue. Adv. Cancer Res. 3:269–325PubMedCrossRefGoogle Scholar
  136. Weisberg, E.L., Koya, K., Modica-Napolitano, J., Li, Y., Chen, L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56:551–555PubMedGoogle Scholar
  137. Weissig, V., and Torchilin, V.P. 2001. Drug and DNA delivery to mitochondria. Adv. Drug Deliv. Rev. 49:1–2PubMedCrossRefGoogle Scholar
  138. Wilson, B.C., and Jeeves, W.P. 1987. In Ben-Hur, E., and Rosenthal, I. eds.), Photomedicine, Vol. 2 (CRC Press, Boca Raton, FL, USA127–177.Google Scholar
  139. Woldegiorgis, G., and Shrago, E. 1985. Adenine nucleotide translocase activity and sensitivity to inhibitors in hepatomas. Comparison of the ADP/ATP carrier in mitochondria and in a purified reconstituted liposome system. J. Biol. Chem. 260:7585–7590PubMedGoogle Scholar
  140. Yen, T.C., King, K.L., Lee, H.C., Yeh, S.H., and Wei, Y.H. 1994. Age-dependent increase of mitochondrial DNA deletions together with lipid peroxides and superoxide dismutase in human liver mitochondria. Free Radic. Biol. Med. 16:207–214PubMedCrossRefGoogle Scholar
  141. Yakes, F.M., and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94:514–519PubMedCrossRefGoogle Scholar
  142. Zamzami, N. et al. 1996. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183:1533–1544PubMedCrossRefGoogle Scholar
  143. Zhang, J., Jin, B., Li, L., Block, E.R., and Patel, J.M. 2005. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am. J. Physiol. Cell. Physiol. 288:C840–C849PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Kjerstin M. Owens
    • 1
  • J. S. Modica-Napolitano
    • 1
  • Keshav K. Singh
    • 1
  1. 1.K.K. Singh Department of Cancer GeneticsRoswell Park Cancer InstituteBuffalo

Personalised recommendations