Skip to main content
  • 4330 Accesses

We give an overview on some of the main results in network information theory, that is the branch of Shannon theory that deals with the fundamental limits of information flow in complex networks. Particular emphasis is given to the fact that classical information-theoretic arguments, which yield the capacity of point-to-point channels, and standard network flow techniques, which are suitable for transport networks, do not necessarily apply when it comes to describing the behavior of information flows over complex networks that feature phenomena such as interference, cooperation or feedback. Notwithstanding this observation, we provide examples of information flow problems where max-flow min-cut type of arguments do prove useful for establishing performance bounds for complex networks and illustrate how mixing different flows through network coding may hold the key towards achieving those bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achacoso, T., Yamamoto, W.: AY's Neuroanatomy of C. elegans for Computation. CRC, Boca Raton (1992)

    Google Scholar 

  2. Ahlswede, R.: Multi-way communication channels. In: Proc. 2nd International Symposium on Information Theory, pp. 23–52. Prague (1971)

    Google Scholar 

  3. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network Information Flow. IEEE Trans Inform Theory 46(4), 1204–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barros, J., Servetto, S.D.: Network information flow with correlated sources. IEEE Trans Inform Theory 52(1), 155–170 (2006)

    Article  MathSciNet  Google Scholar 

  5. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: Turbo-codes. In: Proceedings of the IEEE International Conference on Communications. Geneva (1993)

    Google Scholar 

  6. Biglieri, E., Proakis, J., Shamai, S., di Elettronica, D.: Fading channels: information-theoretic and communications aspects. IEEE Trans Inform Theory44(6), 2619–2692 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borade, S.: Network information flow: Limits and achievability. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT). Lausanne, Switzerland (2002)

    Google Scholar 

  8. Broder, A.: Graph structure in the web. Comput Netw 33, 309–320 (2000)

    Article  Google Scholar 

  9. Costa, M.H.M.: Writing on Dirty Paper. IEEE Trans Inform Theory IT-29(3), 439–441 (1983)

    Article  Google Scholar 

  10. Costa, R.A., Barros, J.: Network information flow in navigable small-world networks. In: Proceedings of the IEEE Workshop in Network Coding, Theory and Applications. Boston, MA, USA (2006)

    Google Scholar 

  11. Cover, T.M.: Comments on broadcast channels. IEEE Trans Inform Theory 44, 2524–2530 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cover, T.M., El Gamal, A.A., Salehi, M.: Multiple access channels with arbitrarily correlated sources. IEEE Trans Inform Theory IT-26(6), 648–657 (1980)

    Article  MathSciNet  Google Scholar 

  13. Cover, T.M., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  14. Csiszár, I., Körner, J.: Information Theory. Academic, New York (1981)

    MATH  Google Scholar 

  15. Dawy, Z., Kamoun, H.: The general Gaussian relay channel: Analysis and insights. In: 5th International ITG Conference on Source and Channel Coding (SCC'04). Erlangen, Germany (2004)

    Google Scholar 

  16. Dixit, S., Yanmaz, E., Tonguz, O.K.: On the design of self-organized cellular wireless networks. IEEE Commun Mag 43(7), 86–93 (2005)

    Article  Google Scholar 

  17. Dorogovtsev, S., Mendes, J.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Google Scholar 

  18. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  19. Fragouli, C., Boudec, J.Y.L., Widmer, J.: Network coding: an instant primer. SIGCOMM Comput Commun Rev 36(1), 63–68 (2006)

    Article  Google Scholar 

  20. Gallager, R.: Low-density parity-check codes. IEEE Trans Inform Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  21. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  22. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Trans Inform Theory 46(2), 388–404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Helmy, A.: Small worlds in wireless networks. IEEE Commun Lett 7(10), 490–492 (2003)

    Article  Google Scholar 

  24. Ho, T., Medard, M., Shi, J., Effros, M., Karger, D.: On randomized network coding. In: Proceedings of 41st Annual Allerton Conference on Communication, Control, and Computing (2003)

    Google Scholar 

  25. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Trans Netw 11(5), 782–795 (2003)

    Article  Google Scholar 

  26. Kramer, G., Gastpar, M., Gupta, P.: Capacity theorems for wireless relay channels. In: 41st Annual Allerton Conf. on Commun., Control and Comp. Allerton, IL, USA (2003)

    Google Scholar 

  27. Laneman, J., Tse, D., Wornell, G.: Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans Inform Theory 50(12), 3062–3080 (2004)

    Article  MathSciNet  Google Scholar 

  28. Lehman, A.R., Lehman, E.: Complexity classification of network information flow problems. In: Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms, pp. 142– 150. Society for Industrial and Applied Mathematics, New Orleans, LA, USA (2004)

    Google Scholar 

  29. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans Inform Theory 49(2), 371–381 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Liao, H.: Multiple access channels. Ph.D. thesis, Department of Electrical Engineering, University of Hawaii, Honolulu, Hawaii (1972)

    Google Scholar 

  31. Lun, D., Medard, M., Koetter, R., Effros, M.: Further results on coding for reliable communication over packet networks. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 1848–1852 (2005)

    Google Scholar 

  32. MacKay, D., Neal, R.: Near Shannon limit performance of low density parity check codes. Electron Lett 33(6), 457–458 (1997)

    Article  Google Scholar 

  33. Manku, G.S., Naor, M., Wieder, U.: Know thy neighbor's neighbor: The power of lookahead in randomized p2p networks. In: Proceedings of the 36th ACM Symposium on Theory of Computing. Chicago, IL, USA (2004)

    Google Scholar 

  34. Mecking, M.: Multiple-access with stripping receivers. In: Proc. 4th European Mobile Communication Conference (EPMCC). Vienna, Austria (2001)

    Google Scholar 

  35. Milgram, S.: Psychology today. Phys Rev Lett 2, 60–67 (1967)

    Google Scholar 

  36. Narula, A., Trott, M.D., Wornell, G.W.: Performance limits of coded diversity methods for transmitter antenna arrays. IEEE Trans Inform Theory 45(7), 2418–2433 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Peraki, C., Servetto, S.: On the maximum stable throughput problem in random networks with directional antennas. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 76–87. ACM, New York (2003)

    Google Scholar 

  38. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  39. Ramamoorthy, A., Shi, J., Wesel, R.D.: On the capacity of network coding for random networks. IEEE Trans Inform Theory 51, 2878–2885 (2005)

    Article  MathSciNet  Google Scholar 

  40. Reznik, A., Kulkarni, S.R., Verdú, S.: A small world approach to heterogeneous networks. Commun Inform Syst 3(4), 325–348 (2004)

    Google Scholar 

  41. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity — part 2: Implementation aspects and performance analysis. IEEE Trans Commun 51(11) (2003)

    Google Scholar 

  42. Shannon, C.: Two-way communication channels. In: Proc. 4th Berkeley Symp. Math. Stat. Prob., vol. 1, pp. 611–644. University California Press, Berkeley (1961)

    Google Scholar 

  43. Shannon, C.E.: A mathematical theory of communication. Bell Syst Tech J 27, 379–423, 623– 656 (1948)

    MathSciNet  Google Scholar 

  44. Slepian, D., Wolf, J.K.: A coding theorem for multiple access channels with correlated sources. Bell Syst Tech J 52(7), 1037–1076 (1973)

    MathSciNet  Google Scholar 

  45. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684) (1998)

    Google Scholar 

  46. Weingarten, H., Steinberg, Y., Shamai, S.: The capacity region of the Gaussian MIMO broadcast channel. In: Proceedings of the 2004 IEEE International Symposium on Information Theory (ISIT 2004). Chicago, IL, USA (2004)

    Google Scholar 

  47. Wyner, A.D., Ziv, J.: The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inform Theory IT-22(1), 1–10 (1976)

    Article  MathSciNet  Google Scholar 

  48. Yeung, R.W.: A First Course in Information Theory. Kluwer, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barros, J. (2009). Information Flows in Complex Networks. In: Emmert-Streib, F., Dehmer, M. (eds) Information Theory and Statistical Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84816-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84816-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84815-0

  • Online ISBN: 978-0-387-84816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics