Introduction to Best-Packing and Best-Covering

  • Sergiy V. BorodachovEmail author
  • Douglas P. Hardin
  • Edward B. Saff
Part of the Springer Monographs in Mathematics book series (SMM)


In this chapter we discuss two fundamental problems of discrete geometry, the best-packing problem and the best-covering problem. In Section 3.1 the general best-packing problem is introduced. We show that it is the limiting case as \(s\rightarrow \infty \) of the Riesz s-energy problem, see Proposition 3.1.2. In that section we also estimate the minimal pairwise separation of an N-point s-energy minimizing configuration on a path connected compact set. Section 3.2 introduces the general best-covering problem and discusses the basic relationship between best-packing distance and mesh ratio on a given compact set.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sergiy V. Borodachov
    • 1
    Email author
  • Douglas P. Hardin
    • 2
  • Edward B. Saff
    • 2
  1. 1.Department of MathematicsTowson UniversityTowsonUSA
  2. 2.Center for Constructive Approximation, Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations