Best-Packing on Compact Sets

  • Sergiy V. BorodachovEmail author
  • Douglas P. Hardin
  • Edward B. Saff
Part of the Springer Monographs in Mathematics book series (SMM)


In this chapter we study the behavior of the leading term as N gets large of the N-point best-packing distance
$$\begin{aligned}\delta _N(A)=\sup \limits _{\omega _N\subset A}\min \limits _{x, y\in \omega _N\atop x\ne y} \left| x-y\right| \end{aligned}$$
(defined earlier in Chapter  3) on a compact \((\mathcal H_d, d)\)-rectifiable set A in \(\mathbb R^p\) as well as the weak* limit distribution of point configurations \(\omega _N\) that attain the supremum in (13.0.1).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sergiy V. Borodachov
    • 1
    Email author
  • Douglas P. Hardin
    • 2
  • Edward B. Saff
    • 2
  1. 1.Department of MathematicsTowson UniversityTowsonUSA
  2. 2.Center for Constructive Approximation, Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations