Skip to main content

Development of the Petunia Inflorescence

  • Chapter
Book cover Petunia

Abstract

Angiosperm species display an amazing variation in the timing and position of flower formation. Comparative genetic analysis in species with different inflorescence architectures, like Arabidopsis and Petunia, provides insight into the genetic alterations underlying these anatomical differences. The picture that emerges is that distinct inflorescence types are controlled by genes encoding conserved proteins, and that the observed diversity results from substantial changes in their expression patterns and regulatory interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Adams, S.R., Pearson, S., Hadley, P. and Patefield, W.M. (1999) The effects of temperature and light integral on the phases of photoperiod sensitivity in Petunia x hybrida. Ann. Bot. 83, 263–269.

    Article  Google Scholar 

  • Alvarez, J., Guli, C.L., Yu, X.-H. and Smyth, D.R. (1992) terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103–116.

    Article  Google Scholar 

  • Balasubramanian, S., Sureshkumar, S., Lempe, J. and Weigel, D. (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2, e106.

    Article  PubMed  Google Scholar 

  • Benlloch, R., Berbel, A., Serrano-Mislata, A. and Madueno, F. (2007) Floral initiation and inflorescence architecture: A comparative view. Ann. Bot. (Lond.) 100, 1609.

    Article  Google Scholar 

  • Blazquez, M.A., Soowal, L.N., Lee, I. and Weigel, D. (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835–3844.

    CAS  PubMed  Google Scholar 

  • Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800.

    Article  CAS  PubMed  Google Scholar 

  • Blazquez, M.A. and Weigel, D. (2000) Integration of floral inductive signals in Arabidopsis. Nature 404, 889–892.

    Article  CAS  PubMed  Google Scholar 

  • Blazquez, M.A., Ferrandiz, C., Madueno, F. and Parcy, F. (2006) How floral meristems are built. Plant Mol. Biol. 60, 855–870.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275, 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, S.B. (2005a) Endless Forms most Beautiful. The New Science of Evo Devo. W.W. Norton & Company, NY.

    Google Scholar 

  • Carroll, S.B. (2005b) Evolution at two levels: On genes and form. PLoS Biol. 3, e245.

    Google Scholar 

  • Cathey, H.M. and Campbell, L.E. (1984) Plant Physiology. In: K.C. Sink (Ed.), Monographs on Theoretical and Applied Genetics 9. Petunia. Springer-Verlag, Berlin, pp. 208–230.

    Google Scholar 

  • Chae, E., Tan, Q.K., Hill, T.A. and Irish, V.F. (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135, 1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Coen, E.S. and Nugent, J.M. (1994) Evolution of flowers and inflorescences. Development (Suppl.), 107–116.

    Google Scholar 

  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  • Doodeman, M., Gerats, A.G.M., Schram, A.W., de Vlaming, P. and Bianchi, F. (1984) Genetic analysis of instability in Petunia hybrida 2. Unstable mutations at different loci as the result of transpositions of the genetic element inserted at the An1 locus. Theor. Appl. Genet. 67, 357–366.

    Article  Google Scholar 

  • Ferrario, S., Busscher, J., Franken, J., Gerats, T., Vandenbussche, M., Angenent, G.C. and Immink, R.G. (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490–1505.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Shchennikova, A.V., Franken, J., Immink, R.G. and Angenent, G.C. (2006) Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol. 140, 890–898.

    Article  CAS  PubMed  Google Scholar 

  • Garner, H.A.A. (1922) Photoperiodism, the response of the plant to relative length of day and night. Science 55, 582–583.

    Article  CAS  PubMed  Google Scholar 

  • Garner, W.W. (1933) Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiol. 8, 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Hempel, F.D., Weigel, D., Mandel, M.A., Ditta, G., Zambryski, P.C., Feldman, L.J. and Yanofsky, M.F. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853.

    CAS  PubMed  Google Scholar 

  • Hoekstra, H.E. and Coyne, J.A. (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61, 995–1016.

    Article  PubMed  Google Scholar 

  • Immink, R.G., Hannapel, D.J., Ferrario, S., Busscher, M., Franken, J., Lookeren Campagne, M.M. and Angenent, G.C. (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126, 5117–5126.

    CAS  PubMed  Google Scholar 

  • Jack, T. (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16 (Suppl.), S1–17.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, K.E. and Wigge, P.A. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050–1054.

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science 286, 1962–1965.

    Article  CAS  PubMed  Google Scholar 

  • King, M.C. and Wilson, A.C. (1975) Evolution at two levels in humans and chimpanzees. Science 188, 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962.

    Article  CAS  PubMed  Google Scholar 

  • Kodadek, T., Sikder, D. and Nalley, K. (2006) Keeping transcriptional activators under control. Cell 127, 261–264.

    Article  CAS  PubMed  Google Scholar 

  • Koes, R. (2008) Evolution and development of virtual inflorescences. Trends Plant Sci. 13, 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Krizek, B.A. and Fletcher, J.C. (2005) Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 6, 688–698.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I., Wolfe, D.S., Nillson, O. and Weigel, D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biol. 7, 95–104.

    Article  Google Scholar 

  • Levin, J.Z. and Meyerowitz, E.M. (1995) UFO: An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529–548.

    Article  CAS  PubMed  Google Scholar 

  • Lohmann, J.U. and Weigel, D. (2002) Building beauty: The genetic control of floral patterning. Dev. Cell 2, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis. Development 125, 3027–3035.

    CAS  PubMed  Google Scholar 

  • Maes, T., Van Montagu, M. and Gerats, T. (1999) The inflorescence architecture of Petunia hybrida is modified by the Arabidopsis thaliana Ap2 gene. Dev. Genet. 25, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Maes, T., Van de Steene, N., Zethof, J., Karimi, M., D′Hauw, M., Mares, G., Van Montagu, M. and Gerats, T. (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13, 229–244.

    Article  CAS  PubMed  Google Scholar 

  • Maizel, A., Busch, M.A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M. and Weigel, D. (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308, 260–263.

    Article  CAS  PubMed  Google Scholar 

  • Mandel, M.A. and Yanofsky, M.F. (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522–524.

    Article  CAS  PubMed  Google Scholar 

  • Mathieu, J., Warthmann, N., Kuttner, F. and Schmid, M. (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17, 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  • Mouradov, A., Cremer, F. and Coupland, G. (2002) Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell 14 (Suppl.), S111–130.

    CAS  PubMed  Google Scholar 

  • Muratani, M. and Tansey, W.P. (2003) How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 4, 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Napoli, C.A. and Ruehle, J. (1996) New mutations affecting meristem growth and potential in Petunia hybrida Vilm. J. Hered. 87, 371–377.

    Google Scholar 

  • Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J. and Ma, H. (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol. 134, 1574–1585.

    Article  CAS  PubMed  Google Scholar 

  • Parcy, F., Nilsson, O., Busch, M.A., Lee, I. and Weigel, D. (1998) A genetic framework for floral patterning. Nature 395, 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Parcy, F. (2005) Flowering: A time for integration. Int. J. Dev. Biol. 49, 585–593.

    Article  PubMed  Google Scholar 

  • Pena, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L. and Martinez-Zapater, J.M. (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat. Biotechnol. 19, 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Prud′homme, B., Gompel, N. and Carroll, S.B. (2007) Emerging principles of regulatory evolution. Proc. Natl. Acad. Sci., USA 104 (Suppl. 1), 8605–8612.

    Article  PubMed  Google Scholar 

  • Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D. and Coen, E. (2007) Evolution and development of inflorescence architectures. Science 316, 1452–1456.

    Article  CAS  PubMed  Google Scholar 

  • Rebocho, A.B. (2007) Genetic control of diverse inflorescence architectures. Ph.D. thesis, VU University, Amsterdam, The Netherlands.

    Google Scholar 

  • Rebocho, A.B., Bliek, M., Kusters, E., Castel, R., Procissi, A., Roobeek, I., Souer, E., and Koes, R. (2008) Role of EVERGREEN in the development of the cymose petunia inflorescence. Dev Cell 15, 437–447.

    Google Scholar 

  • Reinhardt, D. and Kuhlemeier, C. (2002) Plant architecture. EMBO Rep. 3, 846–851.

    Article  CAS  Google Scholar 

  • Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W. and Crosby, W.L. (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20, 433–445.

    Article  CAS  PubMed  Google Scholar 

  • Sessions, A., Yanofsky, M.F. and Weigel, D. (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289, 779–782.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, G.G. and Dean, C. (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289.

    Article  CAS  PubMed  Google Scholar 

  • Smyth, D.R. (2005) Morphogenesis of flowers – our evolving view. Plant Cell 17, 330–341.

    Article  CAS  PubMed  Google Scholar 

  • Snowden, K.C. and Napoli, C.A. (2003) A quantitative study of the lateral branching in petunia. Funct. Plant Biol. 30, 987–994.

    Google Scholar 

  • Souer, E., van Houwelingen, A., Kloos, D., Mol, J.N.M. and Koes, R. (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Souer, E., van der Krol, A.R., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125, 733–742.

    CAS  PubMed  Google Scholar 

  • Souer, E., Rebocho, A.B., Bliek, M., Kusters, E., de Bruin, R.A., and Koes, R. (2008) Patterning of inflorescences and flowers by the F-Box Protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20, 2033–2048.

    Google Scholar 

  • Stuurman, J., Jaggi, F. and Kuhlemeier, C. (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev. 16, 2213–2218.

    Article  CAS  PubMed  Google Scholar 

  • Tobeña-Santamaria, R., Bliek, M., Ljung, K., Sandberg, G., Mol, J., Souer, E. and Koes, R. (2002) FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev. 6, 753–763.

    Article  Google Scholar 

  • Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornielli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.C. and Gerats, T. (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15, 2680–2693.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Feng, S., Nakayama, N., Crosby, W.L., Irish, V., Deng, X.W. and Wei, N. (2003) The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. Plant Cell 15, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  • Weberling, F. (1989) Morphology of Flowers and Inflorescences. Cambridge University Press, Cambridge.

    Google Scholar 

  • Weigel, D., Alvarez, J., Smyth, D., Yanofsky, M.F. and Meyerowitz, E.M. (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859.

    Article  CAS  PubMed  Google Scholar 

  • Weigel, D. and Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, M.D. and Haughn, G.W. (1995) UNUSUAL FLORAL ORGANS controls meristem identity and primordia fate in Arabidopsis. Plant Cell 7, 1485–1499.

    Article  CAS  PubMed  Google Scholar 

  • Wray, G.A. (2007) The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Dinneny, J.R., Crawford, K.M., Rhee, Y., Citovsky, V., Zambryski, P.C. and Weigel, D. (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130, 3735–3745.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Dabi, T. and Weigel, D. (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr. Biol. 15, 436–440.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Chory, J. and Weigel, D. (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev. Biol. 309, 306–316.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, D., Yang, M., Solava, J. and Ma, H. (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev. Genet. 25, 209–223.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Koes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koes, R. et al. (2009). Development of the Petunia Inflorescence. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_9

Download citation

Publish with us

Policies and ethics