Petunia pp 179-197 | Cite as

Development of the Petunia Inflorescence

  • Ronald Koes
  • Mattijs Bliek
  • Rob Castel
  • Elske Kusters
  • Antonia Procissi
  • Alexandra Rebocho
  • Ilja Roobeek


Angiosperm species display an amazing variation in the timing and position of flower formation. Comparative genetic analysis in species with different inflorescence architectures, like Arabidopsis and Petunia, provides insight into the genetic alterations underlying these anatomical differences. The picture that emerges is that distinct inflorescence types are controlled by genes encoding conserved proteins, and that the observed diversity results from substantial changes in their expression patterns and regulatory interactions.


Floral Identity Floral Meristem Ubiquitous Expression Floral Meristem Identity Inflorescence Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.CrossRefPubMedGoogle Scholar
  2. Adams, S.R., Pearson, S., Hadley, P. and Patefield, W.M. (1999) The effects of temperature and light integral on the phases of photoperiod sensitivity in Petunia x hybrida. Ann. Bot. 83, 263–269.CrossRefGoogle Scholar
  3. Alvarez, J., Guli, C.L., Yu, X.-H. and Smyth, D.R. (1992) terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103–116.CrossRefGoogle Scholar
  4. Balasubramanian, S., Sureshkumar, S., Lempe, J. and Weigel, D. (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2, e106.CrossRefPubMedGoogle Scholar
  5. Benlloch, R., Berbel, A., Serrano-Mislata, A. and Madueno, F. (2007) Floral initiation and inflorescence architecture: A comparative view. Ann. Bot. (Lond.) 100, 1609.CrossRefGoogle Scholar
  6. Blazquez, M.A., Soowal, L.N., Lee, I. and Weigel, D. (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835–3844.PubMedGoogle Scholar
  7. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800.CrossRefPubMedGoogle Scholar
  8. Blazquez, M.A. and Weigel, D. (2000) Integration of floral inductive signals in Arabidopsis. Nature 404, 889–892.CrossRefPubMedGoogle Scholar
  9. Blazquez, M.A., Ferrandiz, C., Madueno, F. and Parcy, F. (2006) How floral meristems are built. Plant Mol. Biol. 60, 855–870.CrossRefPubMedGoogle Scholar
  10. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275, 80–83.CrossRefPubMedGoogle Scholar
  11. Carroll, S.B. (2005a) Endless Forms most Beautiful. The New Science of Evo Devo. W.W. Norton & Company, NY.Google Scholar
  12. Carroll, S.B. (2005b) Evolution at two levels: On genes and form. PLoS Biol. 3, e245.Google Scholar
  13. Cathey, H.M. and Campbell, L.E. (1984) Plant Physiology. In: K.C. Sink (Ed.), Monographs on Theoretical and Applied Genetics 9. Petunia. Springer-Verlag, Berlin, pp. 208–230.Google Scholar
  14. Chae, E., Tan, Q.K., Hill, T.A. and Irish, V.F. (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135, 1235–1245CrossRefPubMedGoogle Scholar
  15. Coen, E.S. and Nugent, J.M. (1994) Evolution of flowers and inflorescences. Development (Suppl.), 107–116.Google Scholar
  16. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030–1033.CrossRefPubMedGoogle Scholar
  17. Doodeman, M., Gerats, A.G.M., Schram, A.W., de Vlaming, P. and Bianchi, F. (1984) Genetic analysis of instability in Petunia hybrida 2. Unstable mutations at different loci as the result of transpositions of the genetic element inserted at the An1 locus. Theor. Appl. Genet. 67, 357–366.CrossRefGoogle Scholar
  18. Ferrario, S., Busscher, J., Franken, J., Gerats, T., Vandenbussche, M., Angenent, G.C. and Immink, R.G. (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490–1505.CrossRefPubMedGoogle Scholar
  19. Ferrario, S., Shchennikova, A.V., Franken, J., Immink, R.G. and Angenent, G.C. (2006) Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol. 140, 890–898.CrossRefPubMedGoogle Scholar
  20. Garner, H.A.A. (1922) Photoperiodism, the response of the plant to relative length of day and night. Science 55, 582–583.CrossRefPubMedGoogle Scholar
  21. Garner, W.W. (1933) Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiol. 8, 347–356.CrossRefPubMedGoogle Scholar
  22. Hempel, F.D., Weigel, D., Mandel, M.A., Ditta, G., Zambryski, P.C., Feldman, L.J. and Yanofsky, M.F. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853.PubMedGoogle Scholar
  23. Hoekstra, H.E. and Coyne, J.A. (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61, 995–1016.CrossRefPubMedGoogle Scholar
  24. Immink, R.G., Hannapel, D.J., Ferrario, S., Busscher, M., Franken, J., Lookeren Campagne, M.M. and Angenent, G.C. (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126, 5117–5126.PubMedGoogle Scholar
  25. Jack, T. (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16 (Suppl.), S1–17.CrossRefPubMedGoogle Scholar
  26. Jaeger, K.E. and Wigge, P.A. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050–1054.CrossRefPubMedGoogle Scholar
  27. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science 286, 1962–1965.CrossRefPubMedGoogle Scholar
  28. King, M.C. and Wilson, A.C. (1975) Evolution at two levels in humans and chimpanzees. Science 188, 107–116.CrossRefPubMedGoogle Scholar
  29. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962.CrossRefPubMedGoogle Scholar
  30. Kodadek, T., Sikder, D. and Nalley, K. (2006) Keeping transcriptional activators under control. Cell 127, 261–264.CrossRefPubMedGoogle Scholar
  31. Koes, R. (2008) Evolution and development of virtual inflorescences. Trends Plant Sci. 13, 1–3.CrossRefPubMedGoogle Scholar
  32. Krizek, B.A. and Fletcher, J.C. (2005) Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 6, 688–698.CrossRefPubMedGoogle Scholar
  33. Lee, I., Wolfe, D.S., Nillson, O. and Weigel, D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biol. 7, 95–104.CrossRefGoogle Scholar
  34. Levin, J.Z. and Meyerowitz, E.M. (1995) UFO: An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529–548.CrossRefPubMedGoogle Scholar
  35. Lohmann, J.U. and Weigel, D. (2002) Building beauty: The genetic control of floral patterning. Dev. Cell 2, 135–142.CrossRefPubMedGoogle Scholar
  36. Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis. Development 125, 3027–3035.PubMedGoogle Scholar
  37. Maes, T., Van Montagu, M. and Gerats, T. (1999) The inflorescence architecture of Petunia hybrida is modified by the Arabidopsis thaliana Ap2 gene. Dev. Genet. 25, 199–208.CrossRefPubMedGoogle Scholar
  38. Maes, T., Van de Steene, N., Zethof, J., Karimi, M., D′Hauw, M., Mares, G., Van Montagu, M. and Gerats, T. (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13, 229–244.CrossRefPubMedGoogle Scholar
  39. Maizel, A., Busch, M.A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M. and Weigel, D. (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308, 260–263.CrossRefPubMedGoogle Scholar
  40. Mandel, M.A. and Yanofsky, M.F. (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522–524.CrossRefPubMedGoogle Scholar
  41. Mathieu, J., Warthmann, N., Kuttner, F. and Schmid, M. (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17, 1055–1060.CrossRefPubMedGoogle Scholar
  42. Mouradov, A., Cremer, F. and Coupland, G. (2002) Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell 14 (Suppl.), S111–130.PubMedGoogle Scholar
  43. Muratani, M. and Tansey, W.P. (2003) How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 4, 192–201.CrossRefPubMedGoogle Scholar
  44. Napoli, C.A. and Ruehle, J. (1996) New mutations affecting meristem growth and potential in Petunia hybrida Vilm. J. Hered. 87, 371–377.Google Scholar
  45. Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J. and Ma, H. (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol. 134, 1574–1585.CrossRefPubMedGoogle Scholar
  46. Parcy, F., Nilsson, O., Busch, M.A., Lee, I. and Weigel, D. (1998) A genetic framework for floral patterning. Nature 395, 561–566.CrossRefPubMedGoogle Scholar
  47. Parcy, F. (2005) Flowering: A time for integration. Int. J. Dev. Biol. 49, 585–593.CrossRefPubMedGoogle Scholar
  48. Pena, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L. and Martinez-Zapater, J.M. (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat. Biotechnol. 19, 263–267.CrossRefPubMedGoogle Scholar
  49. Prud′homme, B., Gompel, N. and Carroll, S.B. (2007) Emerging principles of regulatory evolution. Proc. Natl. Acad. Sci., USA 104 (Suppl. 1), 8605–8612.CrossRefPubMedGoogle Scholar
  50. Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D. and Coen, E. (2007) Evolution and development of inflorescence architectures. Science 316, 1452–1456.CrossRefPubMedGoogle Scholar
  51. Rebocho, A.B. (2007) Genetic control of diverse inflorescence architectures. Ph.D. thesis, VU University, Amsterdam, The Netherlands.Google Scholar
  52. Rebocho, A.B., Bliek, M., Kusters, E., Castel, R., Procissi, A., Roobeek, I., Souer, E., and Koes, R. (2008) Role of EVERGREEN in the development of the cymose petunia inflorescence. Dev Cell 15, 437–447. Google Scholar
  53. Reinhardt, D. and Kuhlemeier, C. (2002) Plant architecture. EMBO Rep. 3, 846–851.CrossRefGoogle Scholar
  54. Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W. and Crosby, W.L. (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20, 433–445.CrossRefPubMedGoogle Scholar
  55. Sessions, A., Yanofsky, M.F. and Weigel, D. (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289, 779–782.CrossRefPubMedGoogle Scholar
  56. Simpson, G.G. and Dean, C. (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289.CrossRefPubMedGoogle Scholar
  57. Smyth, D.R. (2005) Morphogenesis of flowers – our evolving view. Plant Cell 17, 330–341.CrossRefPubMedGoogle Scholar
  58. Snowden, K.C. and Napoli, C.A. (2003) A quantitative study of the lateral branching in petunia. Funct. Plant Biol. 30, 987–994.Google Scholar
  59. Souer, E., van Houwelingen, A., Kloos, D., Mol, J.N.M. and Koes, R. (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159–170.CrossRefPubMedGoogle Scholar
  60. Souer, E., van der Krol, A.R., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125, 733–742.PubMedGoogle Scholar
  61. Souer, E., Rebocho, A.B., Bliek, M., Kusters, E., de Bruin, R.A., and Koes, R. (2008) Patterning of inflorescences and flowers by the F-Box Protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20, 2033–2048. Google Scholar
  62. Stuurman, J., Jaggi, F. and Kuhlemeier, C. (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev. 16, 2213–2218.CrossRefPubMedGoogle Scholar
  63. Tobeña-Santamaria, R., Bliek, M., Ljung, K., Sandberg, G., Mol, J., Souer, E. and Koes, R. (2002) FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev. 6, 753–763.CrossRefGoogle Scholar
  64. Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornielli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.C. and Gerats, T. (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15, 2680–2693.CrossRefPubMedGoogle Scholar
  65. Wang, X., Feng, S., Nakayama, N., Crosby, W.L., Irish, V., Deng, X.W. and Wei, N. (2003) The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. Plant Cell 15, 1071–1082.CrossRefPubMedGoogle Scholar
  66. Weberling, F. (1989) Morphology of Flowers and Inflorescences. Cambridge University Press, Cambridge.Google Scholar
  67. Weigel, D., Alvarez, J., Smyth, D., Yanofsky, M.F. and Meyerowitz, E.M. (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859.CrossRefPubMedGoogle Scholar
  68. Weigel, D. and Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495–500.CrossRefPubMedGoogle Scholar
  69. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.CrossRefPubMedGoogle Scholar
  70. Wilkinson, M.D. and Haughn, G.W. (1995) UNUSUAL FLORAL ORGANS controls meristem identity and primordia fate in Arabidopsis. Plant Cell 7, 1485–1499.CrossRefPubMedGoogle Scholar
  71. Wray, G.A. (2007) The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216.CrossRefPubMedGoogle Scholar
  72. Wu, X., Dinneny, J.R., Crawford, K.M., Rhee, Y., Citovsky, V., Zambryski, P.C. and Weigel, D. (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130, 3735–3745.CrossRefPubMedGoogle Scholar
  73. Wu, X., Dabi, T. and Weigel, D. (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr. Biol. 15, 436–440.CrossRefPubMedGoogle Scholar
  74. Wu, X., Chory, J. and Weigel, D. (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev. Biol. 309, 306–316.CrossRefPubMedGoogle Scholar
  75. Zhao, D., Yang, M., Solava, J. and Ma, H. (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev. Genet. 25, 209–223.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ronald Koes
    • 1
  • Mattijs Bliek
  • Rob Castel
  • Elske Kusters
  • Antonia Procissi
  • Alexandra Rebocho
  • Ilja Roobeek
  1. 1.Department of GeneticsVrije Universiteit AmsterdamDe Boelelaan 1085Nederland

Personalised recommendations