Skip to main content

Vegetative Branching in Petunia

  • Chapter
Petunia

Abstract

Plant form is established by the response of the plant to endogenous and environmental cues. One architectural process for which genetic components have been identified is the decision for axillary buds to grow. In Petunia, a number of genes involved in the decision to branch have been identified and aspects of their functions are elucidated. The genes altered in the dad mutants appear to be involved in a single pathway that controls branching and to interact with auxin and cytokinins. These genes mediate the production and reception of hormones inducing and suppressing bud outgrowth. Among species there is a high degree of gene conservation in the pathway and the similarities and differences in gene functions have shown the power of using multiple plant systems. The understanding of developmental processes allows controlled modifications to be made, and the continuing research into axillary bud fate will have a significant impact on future improvements to crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, S., Pearson, S. and Hadley, P. (1997) The effects of temperature and photoperiod on the flowering and morphology of trailing petunias. Acta Hort. 435, 65–75.

    Google Scholar 

  • Aguilar-Martínez, J., Poza-Carrión, C. and Cubas, P. (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458–472.

    Article  PubMed  Google Scholar 

  • Apisitwanich, S., Swiecicki, W. and Wolko, B. (1992) A new ramosus gene on chromosome 5. Pisum Genetics 24, 14–15.

    Google Scholar 

  • Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H. and Kyozuka, J. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  • Arumingtyas, E., Floyd, R., Gregory, M. and Murfet, I. (1992) Branching in Pisum: Inheritance and allelism tests with 17 ramosus mutants. Pisum Genet. 24, 17–31.

    Google Scholar 

  • Auldridge, M., Block, A., Vogel, J., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D. and Klee, H. (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 45, 982–993.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C. and Leyser, O. (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol.16, 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Beveridge, C., Ross, J. and Murfet, I. (1996) Branching in pea (action of genes Rms3 and Rms4). Plant Physiol. 110, 859–865.

    CAS  PubMed  Google Scholar 

  • Beveridge, C., Symons, G., Murfet, I., Ross, J. and Rameau, C. (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol. 115, 1251–1258.

    CAS  Google Scholar 

  • Beveridge, C. (2000) Long-distance signalling and a mutational analysis of branching in pea. Plant Growth Reg. 32, 193–203.

    Article  CAS  Google Scholar 

  • Blixt, S. (1976) Linkage studies in Pisum. XV. Establishing the RMS-gene and the linkage of RMS and FAS in chromosome 3. Agri. Hort. Genet. 34, 83–87.

    Google Scholar 

  • Booker, J., van de Sande, K. and Leyser, H. (1999) max3, an Arabidopsis mutant with a modified pattern of aerial branching. Biol. Plantar. 42, S41.

    Article  Google Scholar 

  • Booker, J., Chatfield, S. and Leyser, O. (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15, 495–507.

    Article  CAS  PubMed  Google Scholar 

  • Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H. and Leyser, O. (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  • Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P. and Leyser, O. (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Develop. Cell 8, 443–449.

    Article  CAS  Google Scholar 

  • Brunaud, A., Bognon, F. and Cornu, A. (1977) Analyse du port chez des Petunia. Bulletin de la société botanique de France 124, 307–327.

    Google Scholar 

  • Burnham, C (1959) Teosinte branched. Maize Genet. Coop. News. 33, 74.

    Google Scholar 

  • Cathey, H. and Campbell, L. (1984) Plant Physiol. In: K Sink (Ed.), Petunia: Monographs on Theoretical and Applied Genetics 9. Springer-Verlag, Berlin, pp. 208–230.

    Google Scholar 

  • Clark, D., Dervinis, C., Barret, J., Klee, H. and Jones, M. (2004) Drought-induced leaf senescence and horticultural performance of transgenic P-SAG12-IPT petunias. J. Amer. Soc. Hort. Sci. 129, 93–99.

    CAS  Google Scholar 

  • Cline, M. (1994) The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiol. Plantar. 90, 230–237.

    Article  CAS  Google Scholar 

  • Cline, M. (1996) Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann. Bot. 78, 255–266.

    Article  CAS  Google Scholar 

  • Doebley, J., Stec, A. and Gustus, C. (1995) teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.

    CAS  PubMed  Google Scholar 

  • Doebley, J., Stec, A. and Hubbard, L. (1997) The evolution of apical dominance in maize. Nature 386, 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Dun, E., Ferguson, B. and Beveridge, C. (2006) Apical dominance and shoot branching: Divergent opinions or divergent mechanisms? Plant Physiol. 142, 812–819.

    Article  CAS  PubMed  Google Scholar 

  • Finlayson, S. (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol. 48, 667–677.

    Article  CAS  PubMed  Google Scholar 

  • Gao, M., Kieliszewski, M., Lamport, D. and Showalter, A. (1999) Isolation, characterization and immunolocalization of a novel, modular tomato arabinogalactan-protein corresponding to the LeAGP-1 gene. Plant J. 18, 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Haver, D. and Schuch, U. (2001) Influence of root restriction and ethylene exposure on apicaldominance of petunia (Petunia x hybrida Hort. Vilm.-Andr.). Plant Growth Reg. 35, 187–196.

    Article  CAS  Google Scholar 

  • Haver, D., Schuch, U. and Lovatt, C. (2003) Exposure of petunia seedlings to ethylene decreased apical dominance by reducing the ratio of auxin to cytokinin. J. Plant Growth Reg. 21, 459–468.

    Article  Google Scholar 

  • Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I. and Kyozuka, J. (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, X., Brcich, T., Dun, E., Goussot, M., Haurogné, K., Beveridge, C. and Rameau, C. (2006) Branching genes are conserved across species: Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026.

    Article  CAS  PubMed  Google Scholar 

  • Kamoda, S. and Saburi, Y. (1993a) Cloning, expression and sequence analysis of a lignostilbene-α,β-dioxygenase gene from Pseudomonas paucimobilis TMY1009. Biosci. Biotech. Biochem. 57, 926–930.

    Google Scholar 

  • Kamoda, S. and Saburi, Y. (1993b) Structural and enzymatical comparison of lignostilbene-α,β-dioxygenase isozymes, I, II and III, from Pseudomonas paucimobilis TMY1009. Biosci. Biotech. Biochem. 57, 931–934.

    Google Scholar 

  • Kebrom, T., Burson, B. and Finlayson, S. (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 140, 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  • Klee, H., Horsch, R., Hinchee, M., Hein, M. and Hoffmann, N. (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Devel. 1, 86–96.

    CAS  Google Scholar 

  • Klee, H. (2003) Hormones are in the air. Proc. Natl. Acad. Sci., USA 100, 10144–10145.

    Article  CAS  PubMed  Google Scholar 

  • Lukens, L. and Doebley, J. (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Molec. Biol. Evol. 18, 627–638.

    CAS  PubMed  Google Scholar 

  • Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B.X. and Ma, J.-X. (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci., USA 102, 12413–12418.

    Article  CAS  PubMed  Google Scholar 

  • Morris, S., Turnbull, C., Murfet, I. and Beveridge, C. (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126, 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  • Morris, S.E., Beveridge, C.A., Murfet, I.C., Prioul, S. and Rameau, C. (2003) The basal-branching pea mutant rms7-1. Pisum Genet. 35, 10–14.

    Google Scholar 

  • Nakagawa, H., Jiang, C.J., Sakakibara, H., Kojima, M., Honda, I., Ajisaka, H., Nishijima, T., Koshioka, M., Homma, T., Mander, L.N. and Takatsuji, H. (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant Journal 41, 512–523.

    Article  CAS  PubMed  Google Scholar 

  • Napoli, C. (1996) Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol. 111, 27–37.

    CAS  PubMed  Google Scholar 

  • Napoli, C.A. and Ruehle, J. (1996) New mutations affecting meristem growth and potential in Petunia hybridaVilm. J. Hered. 87, 371–377.

    Google Scholar 

  • Napoli, C.A., Beveridge, C.A. and Snowden, K.C. (1999) Reevaluating concepts of apical dominance and the control of axillary bud outgrowth. Curr. Topics Develop. Biol. 44, 127–169.

    Article  CAS  Google Scholar 

  • Nelson, D.R., Schuler, M.A., Paquette, S.M., Werck-Reichhart, D. and Bak, S. (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 Cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 135, 756–772.

    Article  CAS  PubMed  Google Scholar 

  • Nordström, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Ã…stot, C., Dolezal, K. and Sandberg, G. (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci., USA 101, 8039–8044.

    Article  PubMed  Google Scholar 

  • Oh, S.A., Park, J.-H., Lee, G.I., Paek, K.H., Park, S.K. and Nam, H.G. (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J. 12, 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Pillay, I. and Railton, I.D. (1983) Complete release of axillary buds from apical dominance in intact, light-grown seedlings of Pisum sativum L. following a single application of cytokinin. Plant Physiol. 71, 972–974.

    Article  CAS  PubMed  Google Scholar 

  • Prinsen, E., Redig, P., Van Onckelen, H., Van Dongen, W. and Esmans, E. (1995) Quantitative analysis of cytokinins by electrospray tandem mass spectrometry. Rapid Comm. Mass Spec. 9, 948–953.

    CAS  Google Scholar 

  • Rameau, C., Murfet, I., Laucou, V., Floyd, R., Morris, S. and Beveridge, C. (2002) Pea rms6 mutants exhibit increased basal branching. Physiol. Plantar. 115, 458–467.

    Article  CAS  Google Scholar 

  • Ross, J. (1998) Effects of auxin transport inhibitors on gibberellins in pea. J. Plant Growth Reg. 17, 141–146.

    Article  CAS  Google Scholar 

  • Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A.D. and McCarty, D.R. (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276, 1872–1874.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S., Qin, X. and Loewen, M. (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279, 46940–46945.

    Article  CAS  PubMed  Google Scholar 

  • Simons, J., Napoli, C., Janssen, B., Plummer, K. and Snowden, K. (2007) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol. 143, 697–706.

    Article  CAS  PubMed  Google Scholar 

  • Snowden, K. and Napoli, C. (2003) A quantitative study of lateral branching in petunia. Funct. Plant Biol. 30, 987–994.

    Article  Google Scholar 

  • Snowden, K., Simkin, A., Janssen, B., Templeton, K., Loucas, H., Simons, J., Karunairetnam, S., Gleave, A., Clark, D. and Klee, H. (2005) The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17, 746–759.

    Article  CAS  PubMed  Google Scholar 

  • Sorefan, K., Booker, J., Haurogne, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C. and Leyser, O. (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Devel. 17, 1469–1474.

    Article  CAS  PubMed  Google Scholar 

  • Souer, E., van der Krol, A., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125, 733–742.

    CAS  PubMed  Google Scholar 

  • Steeves, T. and Sussex, I. (1989) Patterns in Plant Development, 2nd edn. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Stirnberg, P., van de Sande, K. and Leyser, H. (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Devel. 129, 1131–1141.

    CAS  Google Scholar 

  • Symons, G., Murfet, I., Ross, J., Sherriff, L. and Watkentin, T. (1999) bushy, a dominant pea mutant characterised by short, thin stems, tiny leaves, and a major reduction in apical dominance. Physiol. Plantar. 107, 346–352.

    Article  CAS  Google Scholar 

  • Synková, H., Wilhelmová, N., Å esták, Z. and Pospíšilová, J. (1997) Photosyntesis in transgenic plants with elevated cytokinin contents. In: M. Pessarakli (Ed.), Handbook of Photosynthesis. Marcel Dekker, NY, pp. 541–552.

    Google Scholar 

  • Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, M., Takei, K., Kojima, M., Sakakibara, H. and Mori, H. (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45, 1028–1036.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, R. and Hay, M. (2007) Cumulative activation of axillary buds by nodal roots in Trifolium repens L. J. Exper. Bot. 58, 2069–2078.

    Article  CAS  Google Scholar 

  • Turnbull, C., Raymond, M., Dodd, I. and Morris, S. (1997) Rapid increases in cytokinin concentration in lateral buds of chickpea (Cicer arietinum L.) during release of apical dominance. Planta 202, 271–276.

    Article  CAS  Google Scholar 

  • Turnbull, C., Booker, J. and Leyser, H. (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32, 255–262.

    Article  CAS  PubMed  Google Scholar 

  • von Lintig, J. and Vogt, K. (2000) Filling the Gap in Vitamin A Research: Molecular identification of an enzyme cleaving β-carotene to retinal. J. Biol. Chem. 275, 11915–11920.

    Article  Google Scholar 

  • Woo, H., Chung, K., Park, J.-H., Oh, S., Ahn, T., Hong, S., Jang, S. and Nam, H. (2001) ORE9, an F-Box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13, 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  • Zou, J., Chen, Z., Zhang, S., Zhang, W., Jiang, G., Zhao, X., Zhai, W., Pan, X. and Zhu, L. (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarfing in rice (Oryza sativa L.). Planta 222, 604–612.

    Article  CAS  PubMed  Google Scholar 

  • Zubko, E., Adams, C., Machaekova, I., Malbeck, J., Scollan, C. and Meyer, P. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J. 29, 797–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Revel S.M. Drummond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Drummond, R.S., Ledger, S.E., Simons, J.L., Janssen, B.J., Snowden, K.C. (2009). Vegetative Branching in Petunia. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_8

Download citation

Publish with us

Policies and ethics