Petunia pp 131-156 | Cite as

Development and Function of the Arbuscular Mycorrhizal Symbiosis in Petunia

  • D.M.R. Sekhara Reddy
  • Sergio Svistoonoff
  • Florence Breuillin
  • Sarah Wegmüller
  • Marcel Bucher
  • Didier Reinhardt


The majority of terrestrial plants live in symbiotic associations with fungi or bacteria that improve their nutrition. Critical steps in such a symbiosis are mutual recognition and subsequent establishment of an intimate association that involves the penetration of plant tissues and, in many cases, the invasion of individual host cells by the microbial symbiont. The most widespread symbiosis of plants is the arbuscular mycorrhizal (AM) symbiosis, which can improve plant nutrition and stress resistance. The AM symbiosis is controlled by intrinsic factors such as SYM symbiosis genes, and extrinsic factors such as nutrients. Important experimental systems in symbiosis research are legumes (Medicago truncatula and Lotus japonicus) and grasses (rice and maize), but Solanaceae are also catching up. In this chapter, we summarize recent advances in AM research on Petunia, which complement ongoing efforts in the AM research community.


Arbuscular Mycorrhiza Arbuscular Mycorrhiza Mycorrhizal Root Lotus Japonicus Calcium Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827.PubMedCrossRefGoogle Scholar
  2. Ames, R.N., Reid, C.P.P., Porter, L.K and Cambardella, C. (1983) Hyphal uptake and transport of nitrogen from 2 N-15-labeled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytol. 95, 381–396.CrossRefGoogle Scholar
  3. Amijée, F., Tinker, P.B. and Stribley, D.P. (1989) The development of endomycorrhizal root systems; 7. A detailed study of effects of soil-phosphorus on colonization. New Phytol. 111, 435–446.CrossRefGoogle Scholar
  4. Ané, J.-M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E.D., Ayax, C., Lévy, J., Debellé, F., Baek, J.M., Kalo, P., Rosenberg, C., Roe, B.A., Long, S.R., Dénarié, J. and Cook, D.R. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364–1367.PubMedCrossRefGoogle Scholar
  5. Azcon, R., Ambrosano, E. and Charest, C. (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 165, 1137–1145.CrossRefGoogle Scholar
  6. Azcon-Aguilar, C. and Barea, J. (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza 6, 457.CrossRefGoogle Scholar
  7. Balestrini, R., Perotto, S., Gasverde, E., Dahiya, P., Guldmann, L.L., Brewin, N.J. and Bonfante, P. (1999) Transcription of a gene encoding a lectinlike glycoprotein is induced in root cells harboring arbuscular mycorrhizal fungi in Pisum sativum. Mol. Plant-Microbe Interact. 12, 785–791.CrossRefGoogle Scholar
  8. Balestrini, R. and Bonfante, P. (2005) The interface compartment in arbuscular mycorrhizae: A special type of plant cell wall? Plant Biosystems 139, 8–15.Google Scholar
  9. Barker, S.J., Stummer, B., Gao, L., Dispain, I., O'Connor, P.J. and Smith, S.E. (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: Isolation and preliminary characterisation. Plant J. 15, 791–797.CrossRefGoogle Scholar
  10. Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J.C., Roux, C., Bécard, G. and Séjalon-Delmas, N. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. Plos Biol. 4, 1239–1247.CrossRefGoogle Scholar
  11. Bieleski, R.L. (1973) Phosphate pools, phosphate transport and phosphate availability. Ann. Rev. Plant Physiol. Plant Mol. Biol. 24, 225–252.Google Scholar
  12. Bonfante, P. and Perotto, S. (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. A30, 3–21.CrossRefGoogle Scholar
  13. Bonfante-Fasolo, P. (1984) Anatomy and morphology of VA mycorrhizae. In: C.L. Powell and D.J. Bagyaraj (Eds.), VA Mycorrhizae. CRC Press, Boca Raton, pp. 5–33.Google Scholar
  14. Brachmann, A. and Parniske, M. (2006) The most widespread symbiosis on earth. Plos Biol. 4, 1111–1112.CrossRefGoogle Scholar
  15. Brechenmacher, L., Weidmann, S., van Tuinen, D., Chatagnier, O., Gianinazzi, S., Franken, P. and Gianinazzi-Pearson, V. (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14, 253–262.PubMedCrossRefGoogle Scholar
  16. Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304.CrossRefGoogle Scholar
  17. Bucher, M., Rausch, C. and Daram, P. (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. 164, 209–217.CrossRefGoogle Scholar
  18. Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173, 11–26.PubMedCrossRefGoogle Scholar
  19. Buée, M., Rossignol, M., Jauneau, A., Ranjeva, R. and Bécard, G. (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13, 693–698.PubMedCrossRefGoogle Scholar
  20. Catford, J.G., Stähelin, C., Lerat, S., Piché, Y. and Vierheilig, H. (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre- inoculation and treatment with Nod factors. J. Exp. Bot. 54, 1481–1487.PubMedCrossRefGoogle Scholar
  21. Cavagnaro, T.R., Smith, F.A., Kolesik, P., Ayling, S.M. and Smith, S.E. (2001) Arbuscular mycorrhizas formed by Asphodelus fistulosus and Glomus coronatum: Three dimensional analysis of plant nuclear shift using laser scanning confocal microscopy. Symbiosis 30, 109–121.Google Scholar
  22. Chalot, M., Blaudez, D. and Brun, A. (2006) Ammonia: A candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci. 11, 263–266.PubMedCrossRefGoogle Scholar
  23. Chen, A., Hu, J., Sun, S. and Xu, G. (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol. 173, 817–831.PubMedCrossRefGoogle Scholar
  24. Clark, R.B. and Zeto, S.K. (2000) Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 23, 867–902.CrossRefGoogle Scholar
  25. Daram, P., Brunner, S., Persson, B.L., Amrhein, N. and Bucher, M. (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206, 225–233.PubMedCrossRefGoogle Scholar
  26. David-Schwartz, R., Badani, H., Smadar, W., Levy, A.A., Galili, G. and Kapulnik, Y. (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: Plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J. 27, 561–569.PubMedCrossRefGoogle Scholar
  27. David-Schwartz, R., Gadkar, V., Wininger, S., Bendov, R., Galili, G., Levy, A.A. and Kapulnik, Y. (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol. Plant-Microbe Interact. 16, 382–388.PubMedCrossRefGoogle Scholar
  28. Declerck, S., Strullu, D.-G. and Fortin, J.A. (2005) In vitro Culture of Mycorrhizas. Springer, Berlin.CrossRefGoogle Scholar
  29. Demchenko, K., Winzer, T., Stougaard, J., Parniske, M. and Pawlowski, K. (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol. 163, 381–392.CrossRefGoogle Scholar
  30. Dickson, S. and Kolesik, P. (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9, 205–213.CrossRefGoogle Scholar
  31. Drissner, D., Kunze, G., Callewaert, N., Gehrig, P., Tamasloukht, M., Boller, T., Felix, G., Amrhein, N. and Bucher, M. (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318, 265–268.PubMedCrossRefGoogle Scholar
  32. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. and Gianinazzi, S. (1989) First report of non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.) Plant Sci. 60, 215–222.CrossRefGoogle Scholar
  33. Dumas-Gaudot, E., Gollotte, A., Cordier, C., Gianinazzi, S. and Gianinazzi-Pearson, V. (2000) Modulation of host defence systems. In: Y. Kapulnik and D.D.J. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp. 173–200.Google Scholar
  34. Ehrhardt, D., Wais, R. and Long, S.R. (1996) Calcium spiking in alfalfa root hairs responding to Rhizobium meliloti nodulation signals. Cell 85, 673–681.PubMedCrossRefGoogle Scholar
  35. Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P. and Kiss, G.B. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966.PubMedCrossRefGoogle Scholar
  36. Ezawa, T., Smith, S.E. and Smith, F.A. (2002) P metabolism and transport in AM fungi. Plant Soil 244, 221–230.CrossRefGoogle Scholar
  37. Ferrol, N., Gianinazzi, S. and Gianinazzi-Pearson, V. (2002) Arbuscular mycorrhiza induced ATPases and membrane nutrient transport mechanisms. In: S. Gianinazzi, H. Schüepp, J.M. Barea and K. Haselwandter (Eds.), Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Birkhäuser, Basel, pp. 113–122.Google Scholar
  38. Fortin, J.A., Bécard, G., Declerck, S., Dalpé, Y., St.-Arnaud, M., Coughlan, A.P. and Piché, Y. (2002) Arbuscular mycorrhiza on root organ cultures. Can. J. Bot. 80, 1–20.CrossRefGoogle Scholar
  39. Frenzel, A., Manthey, K., Perlick, A.M., Meyer, F., Puhler, A., Kuster, H. and Krajinski, F. (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol. Plant-Microbe Interact. 18, 771–782.PubMedCrossRefGoogle Scholar
  40. Frey, B. and Schüepp, H. (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol. 124, 221–230.CrossRefGoogle Scholar
  41. Fritz, M., Jakobsen, I., Lyngkjaer, M., Thordal-Christensen, H. and Pons-Kühnemann, J. (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16, 413–419.PubMedCrossRefGoogle Scholar
  42. García-Garrido, J.M. and Ocampo, J.A. (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53, 1377–1386.PubMedCrossRefGoogle Scholar
  43. Garriock, M.L., Peterson, R.L. and Ackerley, C.A. (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus Glomus versiforme. New Phytol. 112, 85–92.CrossRefGoogle Scholar
  44. Genre, A. and Bonfante, P. (2005) Building a mycorrhizal cell: How to reach compatibility between arbuscular mycorrhizal fungi. J. Plant Interact. 1, 3–13.CrossRefGoogle Scholar
  45. Genre, A., Chabaud, M., Timmers, T., Bonfante, P. and Barker, D.G. (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17, 3489–3499.PubMedCrossRefGoogle Scholar
  46. George, E. (2000) Nutrient Uptake – Contributions of arbuscular mycorrhizal fungi to plant mineral nutrition. In: Y. Kapulnik and D.D. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp. 307–343.Google Scholar
  47. Gianinazzi-Pearson, V. and Dénarié, J. (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci. 2, 371–372.CrossRefGoogle Scholar
  48. Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., Arango, M. and Gianinazzi, S. (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211, 609–613.PubMedCrossRefGoogle Scholar
  49. Gleason, C., Chaudhuri, S., Yang, T.B., Munoz, A., Poovaiah, B.W. and Oldroyd, G.E.D. (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149–1152.PubMedCrossRefGoogle Scholar
  50. Govindarajulu, M., Pfeffer, P.E., Jin, H.R., Abubaker, J., Douds, D.D., Allen, J.W., Bucking, H., Lammers, P.J. and Shachar-Hill, Y. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823.PubMedCrossRefGoogle Scholar
  51. Grunwald, U., Nyamsuren, O., Tamasloukht, M., Lapopin, L., Becker, A., Mann, P., Gianinazzi-Pearson, V., Krajinski, F. and Franken, P. (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol.Biol. 55, 553–566.PubMedCrossRefGoogle Scholar
  52. Güimil, S., Chang, H.S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ionnidis, V., Oakeley, E.J., Docquier, M., Descombes, P., Briggs, S.P. and Paszkowski, U. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci., USA 102, 8066–8070.PubMedCrossRefGoogle Scholar
  53. Guttenberger, M. (2000) Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211, 299–304.PubMedCrossRefGoogle Scholar
  54. Harper, J.E., Breton, G. and Harmon, A. (2004) Decoding Ca2+ signals through plant protein kinases. Ann. Rev. Plant Biol. 55, 263–288.CrossRefGoogle Scholar
  55. Harrison, M.J., Dewbre, G.R. and Liu, J.Y. (2002) A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14, 2413–2429.PubMedCrossRefGoogle Scholar
  56. Hays, R., Reid, C.P.P., Stjohn, T.V. and Coleman, D.C. (1982) Effects of nitrogen and phosphorus on blue grama growth and mycorrhizal infection. Oecologia 54, 260–265.CrossRefGoogle Scholar
  57. He, X.H. and Nara, K. (2007) Element biofortification: Can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends Plant Sci. 12, 331–333.PubMedCrossRefGoogle Scholar
  58. Heijne, B., Dueck, T.A., Vandereerden, L.J. and Heil, G.W. (1994) Effects of atmospheric ammonia and ammonium sulfate on vesicular-arbuscular mycorrhizal colonization in three heathland species. New Phytol. 127, 685–696.CrossRefGoogle Scholar
  59. Hepper, C.M. (1983) The effect of nitrate and phosphate on the vesicular arbuscular mycorrhizal infection of lettuce. New Phytol. 93, 389–399.CrossRefGoogle Scholar
  60. Hohnjec, N., Vieweg, M.E., Puhler, A., Becker, A. and Kuster, H. (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 137, 1283–1301.PubMedCrossRefGoogle Scholar
  61. Imaizumi-Anraku, H., Takeda, N., Charpentier, M., Perry, J., Miwa, H., Umehara, Y., Kouchi, H., Murakami, Y., Mulder, L., Vickers, K., Pike, J., Downie, J.A., Wang, T., Sato, S., Asamizu, E., Tabata, S., Yoshikawa, M., Murooka, Y., Wu, G.J., Kawaguchi, M., Kawasaki, S., Parniske, M. and Hayashi, M. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433, 527–531.PubMedCrossRefGoogle Scholar
  62. Jasper, D.A., Robson, A.D. and Abbott, L.K. (1979) Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biol. Biochem. 11, 501–505.CrossRefGoogle Scholar
  63. Javot, H., Pumplin, N. and Harrison, M.J. (2007a) Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant Cell Environ. 30, 310–322.Google Scholar
  64. Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R. and Harrison, M.J. (2007b) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci., USA 104, 1720–1725.Google Scholar
  65. Johansen, A., Jakobsen, I. and Jensen, E.S. (1994) Hyphal N-transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160, 1–9.CrossRefGoogle Scholar
  66. Journet, E.P., El-Gachtouli, N., Vernoud, V., de Billy, F., Pichon, M., Dedieu, A., Arnould, C., Morandi, D., Barker, D.G. and Gianinazzi-Pearson, V. (2001) Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol. Plant-Microbe Interact. 14, 737–748.PubMedCrossRefGoogle Scholar
  67. Kai, M., Masuda, Y., Kisuhiro, Y., Osaki, M. and Tadano, T. (1997) Isolation and characterisation of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Sci. Plant Nutr. 43, 227–235.Google Scholar
  68. Kalo, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A. and Oldroyd, G.E.D. (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308, 1786–1789.PubMedCrossRefGoogle Scholar
  69. Kanamori, N., Madsen, L.H., Radutoiu, S., Frantescu, M., Quistgaard, E.M.H., Miwa, H., Downie, J.A., James, E.K., Felle, H.H., Haaning, L.L., Jensen, T.H., Sato, S., Nakamura, Y., Tabata, S., Sandal, N. and Stougaard, J. (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl. Acad. Sci., USA 103, 359–364.PubMedCrossRefGoogle Scholar
  70. Karandashov, V., Nagy, R., Wegmüller, S., Amrhein, N. and Bucher, M. (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci., USA 101, 6285–6290.PubMedCrossRefGoogle Scholar
  71. Karandashov, V. and Bucher, M. (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10, 22–29.PubMedCrossRefGoogle Scholar
  72. Kistner, C. and Parniske, M. (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci. 7, 511–518.PubMedCrossRefGoogle Scholar
  73. Kistner, C., Winzer, T., Pitzschke, A., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Webb, K.J., Szczyglowski, K. and Parniske, M. (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17, 2217–2229.PubMedCrossRefGoogle Scholar
  74. Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Dénarié, J., Barker, D.G. and Bécard, G. (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 131, 952–962.PubMedCrossRefGoogle Scholar
  75. Kosuta, S., Hazledine, S., Sun, J., Miwa, H., Morris, R.J., Downie, J.A. and Oldroyd, G.E.D. (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathways of legumes. Proc. Natl. Acad. Sci., USA 105, 9823–9828.Google Scholar
  76. Krusell, L., Madsen, L.H., Sato, S., Aubert, G., Genua, A., Szczyglowski, K., Duc, G., Kaneko, T., Tabata, S., de Bruijn, F., Pajuelo, E., Sandal, N. and Stougaard, J. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420, 422–426.PubMedCrossRefGoogle Scholar
  77. Leggewie, G., Willmitzer, L. and Riesmeier, J.W. (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell 9, 381–392.PubMedCrossRefGoogle Scholar
  78. Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., Ané, J.M., Lauber, E., Bisseling, T., Denarie, J., Rosenberg, C. and Debellé, F. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364.PubMedCrossRefGoogle Scholar
  79. Liu, J.Y., Blaylock, L.A., Endre, G., Cho, J., Town, C.D., VandenBosch, K.A. and Harrison, M.J. (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15, 2106–2123.PubMedCrossRefGoogle Scholar
  80. Mäder, P., Vierheilig, H., Streitwolf-Engel, R., Boller, T., Frey, B., Christie, P. and Wiemken, A. (2000) Transport of N-15 from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146, 155–161.CrossRefGoogle Scholar
  81. Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N. and Stougaard, J. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640.PubMedCrossRefGoogle Scholar
  82. Maeda, D., Ashida, K., Iguchi, K., Chechetka, S.A., Hijikata, A., Okusako, Y., Deguchi, Y., Izui, K. and Hata, S. (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol. 47, 807–817.PubMedCrossRefGoogle Scholar
  83. Marsh, J.F. and Schultze, M. (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol. 150, 525–532.CrossRefGoogle Scholar
  84. Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V. and Leonard, R.T. (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80, 575–578.CrossRefGoogle Scholar
  85. Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E.D. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci., USA 101, 4701–4705.PubMedCrossRefGoogle Scholar
  86. Muchhal, U.S., Pardo, J.M. and Gaghothama, K.G. (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci., USA 93, 10519–10523.PubMedCrossRefGoogle Scholar
  87. Mudge, S.R., Rae, A.L., Diatloff, E. and Smith, F.W. (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31, 341–353.PubMedCrossRefGoogle Scholar
  88. Nagahashi, G. and Douds, D.D. (1997) Appressorium formation by AM fungi on isolated cell walls of carrot roots. New Phytol. 136, 299–304.CrossRefGoogle Scholar
  89. Nagy, F., Karandashov, V., Chague, W., Kalinkevich, K., Tamasloukht, M., Xu, G.H., Jakobsen, I., Levy, A.A., Amrhein, N. and Bucher, M. (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 42, 236–250.PubMedCrossRefGoogle Scholar
  90. Nishimura, R., Hayashi, M., Wu, G.J., Kouchi, H., Imaizumi-Anraku, H., Murakami, Y., Kawasaki, S., Akao, S., Ohmori, M., Nagasawa, M., Harada, K. and Kawaguchi, M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420, 426–429.PubMedCrossRefGoogle Scholar
  91. Novero, M., Faccio, A., Genre, A., Stougaard, J., Webb, K.J., Mulder, L., Parniske, M. and Bonfante, P. (2002) Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytol. 154, 741–749.CrossRefGoogle Scholar
  92. Oldroyd, G.E.D. and Downie, J.A. (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr. Opin. Plant Biol. 9, 351–357.PubMedCrossRefGoogle Scholar
  93. Pao, S.S., Paulsen, I.T. and Saier, M.H., Jr. (1998) Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34.PubMedGoogle Scholar
  94. Parniske, M. (2000) Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease? Curr. Opin. Plant Biol. 3, 320–328.PubMedCrossRefGoogle Scholar
  95. Parniske, M. (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 7, 414–421.PubMedCrossRefGoogle Scholar
  96. Paszkowski, U. (2006) Mutualism and parasitism: The yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9, 364–370.PubMedCrossRefGoogle Scholar
  97. Paszkowski, U., Jakovleva, L. and Boller, T. (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J. 47, 165–173.PubMedCrossRefGoogle Scholar
  98. Peterson, R.L. and Guinel, F. (2000) The use of plant mutants to study regulation of colonization by AM fungi. In: Y. Kapulnik and D.D. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp. 147–171.Google Scholar
  99. Peterson, R.L., Massicotte, H.B. and Melville, L.H. (2004) Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ontario.Google Scholar
  100. Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Gronlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N. and Stougaard, J. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.PubMedCrossRefGoogle Scholar
  101. Raghothama, K.G. and Karthikeyan, A.S. (2005) Phosphate acquisition. Plant Soil 274, 37–49.CrossRefGoogle Scholar
  102. Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. and Bucher, M. (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–466.PubMedCrossRefGoogle Scholar
  103. Redecker, D. (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244, 67–73.CrossRefGoogle Scholar
  104. Reinhardt, D. (2007) Programming good relations – development of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 10, 98–105.PubMedCrossRefGoogle Scholar
  105. Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) 4-Hundred-Million-Year-Old Vesicular-Arbuscular Mycorrhizae. Proc. Natl. Acad. Sci., USA 91, 11841–11843.PubMedCrossRefGoogle Scholar
  106. Riély, B.K., Lougnon, G., Ané, J.M. and Cook, D.R. (2007) The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J. 49, 208–216.PubMedCrossRefGoogle Scholar
  107. Saito, K., Yoshikawa, M., Yano, K., Miwa, H., Uchida, H., Asamizu, E., Sato, S., Tabata, S., Imaizumi-Anraku, H., Umehara, Y., Kouchi, H., Murooka, Y., Szczyglowski, K., Downie, J.A., Parniske, M., Hayashi, M. and Kawaguchi, M. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses and seed production in Lotus japonicus. Plant Cell 19, 610–624.PubMedCrossRefGoogle Scholar
  108. Sbrana, C. and Giovannetti, M. (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15, 539–545.PubMedCrossRefGoogle Scholar
  109. Schauser, L., Roussis, A., Stiller, J. and Stougaard, J. (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.PubMedCrossRefGoogle Scholar
  110. Schüssler, A., Schwarzott, D. and Walker, C. (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 105, 1413–1421.CrossRefGoogle Scholar
  111. Sekhara Reddy, D.M.R. (2007) Molecular Genetics of the Arbuscular Mycorrhizal Symbiosis in a New Model System: Petunia hybrida. Dept. of Biology, University of Fribourg.Google Scholar
  112. Sekhara Reddy, D.M.R., Schorderet, M., Feller, U. and Reinhardt, D. (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J. 51, 739–750.CrossRefGoogle Scholar
  113. Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis. Academic Press, NY.Google Scholar
  114. Smith, F.W., Ealing, P.M., Dong, B. and Delhaize, E. (1997) The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11, 83–92.PubMedCrossRefGoogle Scholar
  115. Smith, S.E., Smith, F.A. and Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16–20.PubMedCrossRefGoogle Scholar
  116. Smit, P., Raedts, J., Portyanko, V., Debelle, F., Gough, C., Bisseling, T. and Geurts, R. (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308, 1789–1791.PubMedCrossRefGoogle Scholar
  117. Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J. and Szczyglowski, K. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962.PubMedCrossRefGoogle Scholar
  118. Sylvia, D.M. and Neal, L.H. (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol. 115, 303–310.CrossRefGoogle Scholar
  119. Tamasloukht, M., Séjalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Bécard, G. and Franken, P. (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol. 131, 1468–1478.PubMedCrossRefGoogle Scholar
  120. Thomson, B.D., Robson, A.D. and Abbott, L.K. (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103, 751–765.CrossRefGoogle Scholar
  121. Timonen, S. and Peterson, R.L. (2002) Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244, 199–210.CrossRefGoogle Scholar
  122. Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., Murakami, Y., Madsen, L.H., Miwa, H., Nakagawa, T., Sandal, N., Albrektsen, A.S., Kawaguchi, M., Downie, A., Sato, S., Tabata, S., Kouchi, H., Parniske, M., Kawasaki, S. and Stougaard, J. (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441, 1153–1156.PubMedCrossRefGoogle Scholar
  123. Tobar, R., Azcon, R. and Barea, J.M. (1994) Improved nitrogen uptake and transport from N-15-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126, 119–122.CrossRefGoogle Scholar
  124. Udvardi, M.K., Tabata, S., Parniske, M. and Stougaard, J. (2005) Lotus japonicus: Legume research in the fast lane. Trends Plant Sci. 10, 222–228.PubMedCrossRefGoogle Scholar
  125. van Buuren, M.L., Maldonado-Mendoza, I.E., Trieu, A.T., Blaylock, L.A. and Harrison, M.J. (1999) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol. Plant-Microbe Interact. 12, 171–181.PubMedCrossRefGoogle Scholar
  126. Vierheilig, H. (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can. J. Bot. 82, 1166–1176.Google Scholar
  127. Vierheilig, H. (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J. Plant Physiol. 161, 339–341.Google Scholar
  128. Wegmüller, S., Svistoonoff, S., Reinhardt, D., Stuurman, J., Amrhein, N. and Bucher, M. (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant J. 54, 1115–1127.PubMedCrossRefGoogle Scholar
  129. Wellman, C.H., Osterloff, P.L. and Mohiuddin, U. (2003) Fragments of the earliest land plants. Nature 425, 282–285.PubMedCrossRefGoogle Scholar
  130. Zhu, H., Riely, B.K., Burns, N.J. and Ané, J.-M. (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172, 2491–2499.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D.M.R. Sekhara Reddy
    • 1
  • Sergio Svistoonoff
  • Florence Breuillin
  • Sarah Wegmüller
  • Marcel Bucher
  • Didier Reinhardt
  1. 1.Department of BiologyUniversité de Fribourg, Rte.FribourgSwitzerland

Personalised recommendations