Petunia pp 107-129 | Cite as

Cytoplasmic Male Sterility and Fertility Restoration in Petunia

  • Jason D. Gillman
  • Stéphane Bentolila
  • Maureen R. Hanson


Cytoplasmic male sterility (CMS) in Petunia is due to an aberrant chimeric mitochondrially encoded gene designated pcf. Despite the ubiquitous expression of pcf throughout CMS Petunia plants, the primary defect is the disruption of pollen development. Sporogenous and tapetal cells in anthers of CMS lines display abnormalities during meiosis, ultimately resulting in abortion of pollen. Petunia lines carrying the CMS cytoplasm can be restored to normal male fertility by the presence of a single copy of a dominant nuclear Restorer of Fertility (Rf ) gene. The Rf gene reduces the amount of the CMS-associated protein to near-undetectable levels. The Rf gene in Petunia is a member of the pentatricopeptide repeat-motif-containing gene family, a large nuclear gene family implicated in control of the expression of organellar genes. Fertility restoration in Petunia appears to involve interactions between the RF protein and pcf transcripts, perhaps affecting processing and/or translation.


Mitochondrial Genome Cytoplasmic Male Sterility Chloroplast Genome Tapetal Cell Fertility Restoration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akagi, H., Nakamura, A., Yokozeki-Misono, Y., Inagaki, A., Takahashi, H., Mori, K. and Fujimura, T. (2004) Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor. Appl. Genet. 108, 1449–1457.CrossRefPubMedGoogle Scholar
  2. Alfonso, A.A. (2002) Molecular and genetic studies on the restoration of fertility in cytoplasmic male sterile Petunia. Molecular Biology and Genetics. Cornell University, Ithaca, NY, p. 196.Google Scholar
  3. Alfonso, A.A., Bentolila, S. and Hanson, M.R. (2003) Evaluation of the fertility restoring ability of Rf-PPR592 in Petunia. The Philippine Agricultural Scientist 86, 303–315.Google Scholar
  4. Andrés, C., Lurin, C. and Small, I.D. (2007) The multifarious roles of PPR proteins in plant mitochondrial gene expression. Physiol. Plant. 129, 14–22.CrossRefGoogle Scholar
  5. Aubourg, S., Boudet, N., Kreis, M. and Lecharny, A. (2000) In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol. Biol. 42, 603–613.CrossRefPubMedGoogle Scholar
  6. Bailey, T.L. and Elkan, C. (1994) In: R. Altman, D. Brutlag, P. Karp, R. Lathrop and D. Searls (Eds.), Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. Amer. Assoc. Artificial Intelligence Press, Menlo Park, CA, pp. 28–36.Google Scholar
  7. Balk, J. and Leaver, C.J. (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome C release. Plant Cell 13, 1803–1818.CrossRefPubMedGoogle Scholar
  8. Bentolila, S., Zethof, J., Gerats, T. and Hanson, M.R. (1998) Locating the Petunia Rf gene on a 650 kb DNA fragment. Theor. Appl. Genet. 96, 980–988.CrossRefGoogle Scholar
  9. Bentolila, S. and Hanson, M.R. (2001) Identification of a BIBAC clone that co-segregates with the Petunia restorer of fertility (Rf) gene. Mol. Genet. Gen. 266, 223–230.Google Scholar
  10. Bentolila, S., Alfonso, A.A. and Hanson, M.R. (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci., USA 99, 10887–10892.CrossRefPubMedGoogle Scholar
  11. Bino, R.J. (1985a) Histological aspects of microsporo-genesis in fertile, cytoplasmic male sterile and restored fertile Petunia hybrida. Theor. Appl. Genet. 69, 423–428.Google Scholar
  12. Bino, R.J. (1985b) Ultrastructural aspects of cytoplasmic male sterility in Petunia hybrida. Protoplasma 127, 230–240.Google Scholar
  13. Bino, R.J., de Hoop, S.J., van Marrewijk, G.A.M. and Van Went, J.L. (1986a) Energy metabolism in Petunia hybrida anthers: A comparison between fertile and cytoplasmic male sterile development. In: D.L. Mulcahy and E. Ottaviano (Eds.), Biotechnology and Ecology of Pollen. Springer-Verlag, NY, pp. 327–332.Google Scholar
  14. Bino, R.J., Suurs, L.C.J.M., de Hoop, S.J., Van Der Neut, A., Van Went, J.L. and Van Marrewijk, G.A.M. (1986b) Characterization of cytoplasmic male sterility in Petunia hybrida and Zea mays. Localization and activity of cytochrome c oxidase. Euphyt. 35, 905–918.Google Scholar
  15. Boeshore, M.L., Lifshitz, I., Hanson, M.R. and Izhar, S. (1983) Novel composition of mitochondrial genomes in Petunia somatic hybrids derived from cytoplasmic male sterile and fertile plants. Mol. Gen. Genet. 190, 459–467.CrossRefGoogle Scholar
  16. Boeshore, M.L., Hanson, M.R. and Izhar, S. (1985) A variant mitochondrial DNA arrangement specific to Petunia stable sterile somatic hybrids. Plant Mol. Biol. 4, 125–132.CrossRefGoogle Scholar
  17. Boldogh, I.R., Fehrenbacher, K.L., Yang, H.C. and Pon, L.A. (2005) Mitochondrial movement and inheritance in budding yeast. Gene 354, 28–36.CrossRefPubMedGoogle Scholar
  18. Brown, G.G., Formanova, N., Jin, H., Wargachuk, R., Dendy, C., Patil, P., Laforest, M., Zhang, J., Cheung, W.Y. and Landry, B.S. (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatrico-peptide repeats. Plant J. 35, 262–272.CrossRefPubMedGoogle Scholar
  19. Chase, C.D. (2007) Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 23, 81–90.CrossRefPubMedGoogle Scholar
  20. Clark, E.M., Izhar, S. and Hanson, M.R. (1985) Independent segregation of the plastid genome and cytoplasmic male sterility in Petunia somatic hybrids. Mol. Gen. Genet. 199, 440–445.CrossRefGoogle Scholar
  21. Clark, E., Schnuabelrauch, L., Hanson, M.R. and Sink, K.C. (1986) Differential fate of plastid and mitochondrial geneomes in Petunia somatic hybrids. Theor. Appl. Genet. 72, 748–755.CrossRefGoogle Scholar
  22. Clark, E.M., Gafni, Y. and Izhar, S. (1988) Loss of CMS-specific mitochondria DNA arrangement in fertile segregants of Petunia hybrids. Plant Mol. Biol. 11, 249–253.CrossRefGoogle Scholar
  23. Clayton, E.E. (1950) Male sterile tobacco. J. Heredity 41, 171–175.Google Scholar
  24. Clifton, R., Millar, A.H. and Whelan, J. (2006) Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim. Biophys. Acta 1757, 730–741.CrossRefGoogle Scholar
  25. Conklin, P.L. and, Hanson, M.R. (1994) Recombination of plant mitochondrial genomes. In: J. Paszkowski (Ed.), Homologous Recombination in Plants. Kluwer Academic Publishing, Dordrecht, pp. 61–81.Google Scholar
  26. Conley, C.A. and Hanson, M.R. (1994) Tissue-specific protein expression in plant mitochondria. Plant Cell 6, 85–91.CrossRefPubMedGoogle Scholar
  27. Conley, C.A., Parthasarathy, M.V. and Hanson, M.R. (1994) Effects of Petunia Cytoplasmic Male Sterile (CMS) cytoplasm on the development of sterile and fertility-restored P. parodii anthers. Amer. J. Bot. 81, 630–640.CrossRefGoogle Scholar
  28. Conley, C.A. and Hanson, M.R. (1995) How do alterations in plant mitochondrial genomes disrupt pollen development? J. Bioenerg. Biomem. 27, 447–456.CrossRefGoogle Scholar
  29. Conley, C.A. and Hanson, M.R. (1997) Cryotstat tissue printing: An improved method for histochemical and immunocyto-chemical localization in soft tissues. Biotechniques 22, 488–495.PubMedGoogle Scholar
  30. Connett, M.B. and Hanson, M.R. (1990) Differential mitochondrial electron transport through the cyanide-sensitive and cyanide-insensitive pathways in isonuclear lines of cytoplasmic male sterile, male fertile, and restored Petunia. Plant Physiol. 93, 1634–1640.CrossRefPubMedGoogle Scholar
  31. Cornu, A. and Dulieu, H. (1988) Pollen transmission of plastid DNA under genotypic control in Petunia hybrida. J. Hered. 79, 40–44.Google Scholar
  32. Cui, X., Wise, R.P. and Schnable, P.S. (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272, 1334–1336.CrossRefPubMedGoogle Scholar
  33. DeHaas, J.M., Hille, J., Kors, F., van der Meer, B., Kool, A.J., Folkerts, O. and Nijkamp, H.J. (1991) Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins. Curr. Genet. 20, 503–513.CrossRefGoogle Scholar
  34. Derepas, A. and Dulieu, H. (1992) Inheritance of the capacity to transfer plastids by the pollen parent in Petunia hybrida Hort. J. Hered. 83, 6–10.Google Scholar
  35. Duvick, D.N. (1959) The use of cytoplasmic male sterility in hybrid seed production. Econ. Bio. 13, 167–195.CrossRefGoogle Scholar
  36. Edwardson, J.R. and Corbett, M.K. (1961) Asexual transmission of cytoplasmic male sterility. Proc. Natl. Acad. Sci., USA 47, 390–396.CrossRefPubMedGoogle Scholar
  37. Edwardson, J.R. and Warmke, H.E. (1967) Fertility restoration in male-sterile Petunia. J. Hered. 58, 195–196.Google Scholar
  38. Folkerts, O. and Hanson, M.R. (1989) Three copies of a single recombination repeat occur on the 443 kb master circle of the Petunia hybrida 3704 mitochondrial genome. Nucl. Acids Res. 17, 7345–7357.CrossRefPubMedGoogle Scholar
  39. Folkerts, O. and Hanson, M.R. (1991) The male sterility-associated pcf gene and the normal atp9-1 gene in Petunia are located on different mitochondrial DNA molecules. Genet. 129, 885–895.Google Scholar
  40. Fox, T.D., Costanzo, M.C., Strick, C.A., Marykwas, D.L., Seaver, E.C. and Rosenthal, J.K. (1988) Translational regulation of mitochondrial gene expression by nuclear genes of Saccharomyces cerevisiae. Philos. Trans. Royal Soc. (Lond.) B, Biol. Sci. 319, 97–105.CrossRefGoogle Scholar
  41. Frankel, R. (1956) Graft-induced transmission to progeny of cytoplasmic male sterility in Petunia. Genet. 47, 641–646.Google Scholar
  42. Frankel, R. (1962) Further evidence on graft-induced transmision to progeny of cytoplasmic male sterility in Petunia hybrida. Genet. 47, 641–646.Google Scholar
  43. Frankel, R., Izhar, S. and Nitsan, J. (1969) Timing of callase activity and cytoplasmic male sterility in Petunia. Biochem. Genet. 3, 451–455.CrossRefPubMedGoogle Scholar
  44. Frankel, R. (1970) Genetical evidence on alternative maternal and mendelian hereditary elements in Petunia hybrida. Hered. 26, 107–119.CrossRefGoogle Scholar
  45. Gillman, J.D., Bentolila, S. and Hanson, M.R. (2007) The Petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. Plant J. 49, 217–227.CrossRefPubMedGoogle Scholar
  46. Hanson, M.R. (1984) Stability, variation, and recombination of plant mitochondrial genomes via cell and tissue culture. Oxford Surv. Plant Molec. Cell Biol. 1, 33–52.Google Scholar
  47. Hanson, M.R. and Conde, M.F. (1985) Functioning and variation of cytoplasmic genomes: Lessons from cytoplasmic-nuclear interactions conferring male sterilities in plants. Int. Rev. Cytol. 94, 213–267.CrossRefGoogle Scholar
  48. Hanson, M.R., Rothenberg, M., Boeshore, M.L. and Nivison, H.T. (1985) Organelle segregation and recombination following protoplast fusion: Analysis of sterile cytoplasms. In: M. Zaitlin (Ed.), Biotechnology in Plant Science: Relevance to Agriculture in the Eighties. Academic Press, NY, pp. 129–144.Google Scholar
  49. Hanson, M., Pruitt, K.D. and Nivison, H.T. (1989) Male sterility loci in plant mitochondrial genomes. Oxford Surv. Plant Molec. Cell Biol. 6, 61–85.Google Scholar
  50. Hanson, M.R. and Folkerts, O.F. (1992) Structure and function of the plant mitochondrial genome. Int. Rev. Cytol. 41, 129–172.CrossRefGoogle Scholar
  51. Hanson, M.R., Wilson, R.K., Bentolila, S., Köhler, R.H. and Chen, H.C. (1999) Mitochondrial gene organization and expression in Petunia male fertile and sterile plants. J. Hered. 90, 362–368.CrossRefPubMedGoogle Scholar
  52. Hanson, M.R. and Bentolila, S. (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16 (Suppl. S), 154–169. J. Hered. 90, 362–368.Google Scholar
  53. Izhar, S. and Frankel, R. (1971) Mechanism of male sterility in Petunia: The relationship between pH, callase activity in the anthers, and the breakdown of microsporogenesis. Theor. Appl. Genet. 41, 104–108.CrossRefGoogle Scholar
  54. Izhar, S. (1973) Mechanism of male sterility in Petunia. Theor. Appl. Genet. 43, 13–17.CrossRefGoogle Scholar
  55. Izhar, S. and Frankel, R. (1973) Mechanism of male sterility in Petunia II: Free amino acids in male fertile and male sterile anthers during microsporogenesis. Theor. Appl. Genet. 43, 13–17.CrossRefGoogle Scholar
  56. Izhar, S. and Frankel, R. (1976) Cytoplasmic male sterility in Petunia. J. Hered. 67, 43–46.Google Scholar
  57. Izhar, S. (1978) Cytoplasmic male sterility in Petunia III. Genetic control of microsporogenesis and male fertility restoration. J. Hered. 69, 22–26.Google Scholar
  58. Izhar, S., Schlicter, M. and Swarzberg, D. (1983) Sorting out of the cytoplasmic elements in somatic hybrids of Petunia and the prevalence of the heteroplasmon through several meiotic cycles. Mol. Gen. Genet. 190, 468–474.CrossRefGoogle Scholar
  59. Izhar, S. (1984) Male-sterility in Petunia. In: K.C. Sink (Ed.), Monographs on Theoretical and Applied Genetics 9: Petunia. Springer-Verlag, Berlin, pp. 77–91.Google Scholar
  60. Izhar, S., Joseph, M.B. and Evenor, D. (1988) Attempts to detect extra genomical factors in cytoplasmic male-sterile Petunia lines. Theor. Appl. Genet. 76, 455–458.Google Scholar
  61. Kazama, T. and Toriyama, K. (2003) A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 544, 99–102.CrossRefPubMedGoogle Scholar
  62. Klein, R.R., Klein, P.E., Mullet, J.E., Minx, P., Rooney, W.L. and Schertz, K.F. (2005) Fertility re-storer locus Rf1 [corrected] of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor. Appl. Genet. 111, 994–1012.CrossRefPubMedGoogle Scholar
  63. Komori, T., Ohta, S., Murai, N., Takakura, Y., Kuraya, Y., Suzuki, S., Hiei, Y., Imaseki, H. and Nitta, N. (2004) Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 37, 315–325.CrossRefPubMedGoogle Scholar
  64. Lam, E., Kato, N. and Lawton, M. (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853CrossRefPubMedGoogle Scholar
  65. Levan, A. (1942) A gene for the remaining in tetrads of ripe pollen in Petunia. Hered. 28, 429–435.Google Scholar
  66. Logan, D.C. (2006) The mitochondrial compartment. J. Exp. Bot. 57, 1225–1243.CrossRefPubMedGoogle Scholar
  67. Lurin, C., Andres, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M.L., Mireau, H., Peeters, N., Renou, J.P., Szurek, B., Taconnat, L. and Small, I. (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103.CrossRefPubMedGoogle Scholar
  68. Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in spe-cific genomic regions by using segregating populations. Proc. Natl. Acad. Sci., USA 88, 9828–9832.CrossRefPubMedGoogle Scholar
  69. Morgan, A. and Maliga, P. (1987) Rapid chloroplast segregation and recombination of mitochondrial DNA in Brassica cybrids. Mol. Gen. Genet. 209, 240–246.CrossRefPubMedGoogle Scholar
  70. Newton, K.J., Gabay-Laughnan, S. and de Paepe, R. (2004) Mitochondrial mutations in plants. In: D.A. Day, H.A. Millar and J. Whelan (Eds.), Plant Mitochondria: From Genome to Function. Kluwer Academic Publishers, Dordrecht, pp. 121–142Google Scholar
  71. Nivison, H.T. and Hanson, M.R. (1987) Production and purification of synthetic peptide antibodies. Plant Mol. Biol. Rep. 5, 295–309.CrossRefGoogle Scholar
  72. Nivison, H.T. and Hanson, M.R. (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in Petunia. Plant Cell 1, 1121–1130.CrossRefPubMedGoogle Scholar
  73. Nivison, H.T., Sutton, C.A., Wilson, R.K. and Hanson, M.R. (1994) Sequencing, processing, and localization of the Petunia CMS-associated mitochondrial protein. Plant J. 5, 613–623.CrossRefPubMedGoogle Scholar
  74. Palmer, J.M. (1976) The organization and regulation of electron transport in plant mitochondria. Ann. Rev. Plant Physiol. 27, 133–157.CrossRefGoogle Scholar
  75. Pelletier, G. and Budar, F. (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr. Opin. Biotechnol. 18, 121–125.CrossRefPubMedGoogle Scholar
  76. Perl, M., Swartberg, D. and Izhar, S. (1992) Differences in amino acid transport in isonuclear lines of cytplasmic male-sterile and male-fertile Petunia. Theor. Appl. Genet. 84, 92–96.Google Scholar
  77. Poutre, C.G. and Fox, T.D. (1987) PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genet. 115, 637–647.Google Scholar
  78. Pruitt, K.D. and Hanson, M.R. (1989) Cytochrome oxidase subunit II sequences in Petunia mitochondria: Two intron-containing genes and an intronless pseudogene associated with cytoplasmic male sterility. Curr. Genet. 16, 281–291.CrossRefPubMedGoogle Scholar
  79. Pruitt, K.D. and Hanson, M.R. (1991) Transcription of the Petunia mitochondrial CMS-associated pcf locus in male sterile and fertility-restored lines. Mol. Gen. Genet. 227, 348–355.CrossRefPubMedGoogle Scholar
  80. Rasmussen, J. and Hanson, M.R. (1989) A NADH dehydrogenase subunit gene is co-transcribed with the abnormal Petunia mitochondrial gene associated with cytoplasmic male sterility. Mol. Gen. Genet. 215, 332–336.CrossRefPubMedGoogle Scholar
  81. Rothenberg, M., Boeshore, M.L., Hanson, M.R. and Izhar, S. (1985) Intergenomic recombination of mitochondrial genomes in a somatic hybrid plants. Curr. Genet. 9, 615–618.CrossRefGoogle Scholar
  82. Rothenberg, M. and Hanson, M.R. (1987) Recombination between parental mitochondrial DNA following protoplast fusion can occur in a region which normally does not undergo intragenomic recombination in parental plants. Curr. Genet. 12, 235–240.CrossRefGoogle Scholar
  83. Rothenberg, M. and Hanson, M.R. (1988) A functional mitochondrial ATP synthase proteolipid gene produced by re-combination of parental genes in a Petunia somatic hybrid. Genet. 118, 155–161.Google Scholar
  84. Schnable, P.S. and Wise, R.P. (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Pl. Sci. 3, 175–180.CrossRefGoogle Scholar
  85. Small, I.D. and Peeters, N. (2000) The PPR motif – a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 46–47.CrossRefPubMedGoogle Scholar
  86. van der Plas, L.H.W., de Gucht, L.P.E., Bakels, R.H.A. and Otto, B. (1987) Growth and respiratory characteristics of batch and continuous cell suspension cultures derived from fertile and male sterile Petunia hybrida. J. Plant Physiol. 130, 449–460.Google Scholar
  87. van Marrewijk, G.A.M. (1970) Cytoplasmic male sterility in Petunia. II. A discussion on male sterility transmission by means of grafting. Euphyt. 19, 25–35.CrossRefGoogle Scholar
  88. van Marrewijk, G.A.M., Bino, R.J. and Suurs, L.C.J.M. (1986) Characterization of cytoplasmic male sterility in Petunia hybrida. I. Localization, composition and activity of esterases. Euphyt. 35, 77–88.CrossRefGoogle Scholar
  89. Weber-Lotfi, F., Marechal-Drouard, L., Folkerts, O., Hanson, M. and Grienenberger, J.M. (1993) Localization of tRNA genes on the Petunia hybrida 3704 mitochondrial genome. Plant Mol. Biol. 21, 403–407.CrossRefPubMedGoogle Scholar
  90. Welzel, G. (1954) [Embryological and genetic studies on pollen-sterile mutants of Petunia.]. Z Indukt Abstamm Verer-bungsl 86, 35–53.CrossRefGoogle Scholar
  91. Wilson, R.K. and Hanson, M.R. (1996) Preferential RNA editing at specific sites within transcripts of two plant mitochondrial genes does not depend on transcriptional context or nuclear geno-type. Curr. Genet. 30, 502–508.CrossRefPubMedGoogle Scholar
  92. Wintz, H., Chen, H.C., Sutton, C.A., Conley, C.A., Cobb, A., Ruth, D. and Hanson, M.R. (1995) Expression of the CMS-associated urfS sequence in transgenic Petunia and tobacco. Plant Mol. Biol. 28, 83–92.CrossRefPubMedGoogle Scholar
  93. Wolf-Litman, O., Soferman, O., Tabib, Y. and Izhar, S. (1992) Interaction of the mitochondrial locus for cytoplasmic male sterility in Petunia with multiple fertility-restoration genes in somatic hybrid plants. Theor. Appl. Genet. 84, 829–834.CrossRefGoogle Scholar
  94. Xu, Y. and Hanson, M.R. (2000) Programmed cell death during pollination-induced petal senescence in Petunia. Plant Physiol. 122, 1323–1333.CrossRefPubMedGoogle Scholar
  95. Young, E.G., Hanson, M.R. and Dierks, P.M. (1986) Sequence and transcription analysis of the Petunia mitochondrial gene for the ATP synthase proteolipid subunit. Nucl. Acids Res. 14, 7995–8006.CrossRefPubMedGoogle Scholar
  96. Young, E.G. and Hanson, M.R. (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50, 41–49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jason D. Gillman
  • Stéphane Bentolila
  • Maureen R. Hanson
    • 1
  1. 1.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA

Personalised recommendations