Advertisement

Petunia pp 411-433 | Cite as

Petunia Biotechnology

  • Beverly A. Underwood
  • Michelle L. Jones
  • David G. Clark

Abstract

Over the past two decades Petunia has served as an excellent model system for uncovering the molecular, biochemical and physiological bases of several plant processes. The experimental tools available in Petunia have allowed researchers to examine genetically controlled changes in plant morphological characteristics at both the cellular and whole-plant levels. Many of the basic experiments conducted with Petunia in recent years have led to the development of new biotechnologies that are being tested for potential commercial utility. Although most commercial advancements in Petunia in the near future will almost certainly come from the hands of conventional breeders, Petunia as a biotechnology model system has provided a proof-of-concept platform through which new technological advancements for horticultural crops have been well tested. While the worldwide commercial Petunia market is significant, the greatest benefits of Petunia biotechnology have most certainly been for the larger plant science community. As we proceed into the future it will undoubtedly continue to serve both roles.

Keywords

Transgenic Plant Gibberellic Acid Floral Scent Methyl Benzoate Delay Leaf Senescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abeles, F.B., Morgan, P.W. and Saltveit, M.E. (1992) Ethylene in Plant Biology, 2nd Ed. Academic Press, San Diego, CA.Google Scholar
  2. Akiyoshi, D., Klee, H., Amasino, R., Nester, E. and Gordon, M. (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci., USA 81, 5994–5998.Google Scholar
  3. Baldwin, E.A., Scott, J.W., Shewmaker, C.K. and Schuch, W. (2000) Flavor trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components. HortScience 35, 1013–1021.Google Scholar
  4. Barry, K. (2004) Characterization of transgenic ethylene insensitive Petunia x hybrida plants with a focus on seed development. Ph.D. Thesis, University of Florida, Gainesville, Florida.Google Scholar
  5. Beclin, C., Boutet, S., Waterhouse, P. and Vaucheret, H. (2002) A branched pathway for transgene-induced RNA silencing in plants. Current Biol. 12, 684–688.CrossRefGoogle Scholar
  6. Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262, 539–544.CrossRefPubMedGoogle Scholar
  7. Chang, H., Jones, M.L., Banowetz, G.M. and Clark, D.G. (2003) Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol. 132, 2174–2183.CrossRefPubMedGoogle Scholar
  8. Chen, Y.F., Etheridge, N. and Schaller, G.E. (2005) Ethylene signal transduction. Ann. Bot. (Lond.) 95, 901–915.CrossRefGoogle Scholar
  9. Clark, D.G., Gubrium, E.K., Barrett, J.E., Nell, T.A. and Klee, H.J. (1999) Root formation in ethylene-insensitive plants. Plant Physiol. 121, 53–59.CrossRefPubMedGoogle Scholar
  10. Clark, D.G., Dervinis, C., Barrett, J.E., Klee, H. and Jones, M. (2004) Drought-induced leaf senescence and horticultural performance of transgenic P-SAG12-IPT petunias. J. Amer. Soc. Hort. Sci. 129, 93–99.Google Scholar
  11. Clark, D.G. (2004) Applications of Plant Biotechnology to Ornamental Crops. In: P. Cristou and H. Klee (Eds.), Handbook of Plant Biotechnology, Vol .II. John Wiley and Sons, Ltd. West Sussex, England, pp. 863–879.Google Scholar
  12. Clevenger, D.J., Barrett, J.E., Klee, H.J. and Clark, D.G. (2004) Factors affecting seed production in transgenic ethylene-insensitive petunias. J. Amer. Soc. Hort. Sci. 129, 401–406.Google Scholar
  13. D'Auria, J.C., Chen, F. and Pichersky, E. (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466–476.CrossRefPubMedGoogle Scholar
  14. Davies, G.J., Sheikh, M.A., Ratcliffe, O.J., Coupland, G. and Furner, I.J. (1998) Genetics of homology-dependent gene silencing in Arabidopsis: A role for methylation. Plant J. 12, 791–804.CrossRefGoogle Scholar
  15. Dervinis, C. (1999) Genetic transformation of Petunia X hybrida for delayed leaf senescence using PSAG12IPT. MS Thesis, University of Florida, Gainesville, Florida.Google Scholar
  16. Dexter, R., Qualley, A., Kish, C.M., Ma, C.J., Koeduka, T., Nagegowda, D.A., Dudareva, N., Pichersky, E. and Clark, D. (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J. 49, 265–275.CrossRefPubMedGoogle Scholar
  17. Dexter, R.J., Verdonk, J.C., Underwood, B.A., Shibuya, K., Schmelz, E.A. and Clark, D.G. (2008) Tissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene. J. Exp. Bot. 59, 609–618.Google Scholar
  18. Diego, M.A., Jones, N.A., Field, T., Hernandez-Reif, M., Schanberg, S., Kuhn, C., McAdam, V., Galamaga, R. and Galamaga, M. (1998) Aromatherapy positively affects mood: EEG patterns of alertness and math computations. Int. J. Neurosci. 96, 217–224.CrossRefPubMedGoogle Scholar
  19. Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., Fäldt, J., Miller, B. and Bohlmann, J. (2003)(E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15, 1227–1241.CrossRefPubMedGoogle Scholar
  20. Ecker, J.R. and Davis, R.W. (1986) Inhibition of gene expression in plant cells by expression of antisense RNA. Proc. Natl. Acad. Sci., USA 83, 5372–5376.Google Scholar
  21. Faiss, M., Zalubilova, J., Strnad, M. and Schmulling, T. (1997) Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 12, 401–415.CrossRefPubMedGoogle Scholar
  22. Finnegan, J. and McElroy, D. (1994) Transgene inactivation: Plants fight back. Bio/Technology 12, 883–888.CrossRefGoogle Scholar
  23. Fraley, R.T., Rogers, S.G. and Horsch, R.B. (1983a) Use of a chimeric gene to confer antibiotic resistance to plant cells. In: Advances in Gene Technology: Molecular Genetics of Plants and Animals. Miami Winter Symposia 20, 211–221.Google Scholar
  24. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffmann, N.L. and Woo, S.C. (1983b) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci., USA 80, 4803–4807.Google Scholar
  25. Framond, A.J., Bevan, M.W., Barton, K.A., Flavell, F. and Chilton, M.D. (1983) Mini-Ti plasmid and a chimeric gene construct: New approaches to plant gene vector construction. In: Advances in Gene Technology: Molecular Genetics of Plants and Animals. Miami Winter Symposia 20, 159–170.Google Scholar
  26. Gan, S. and Amasino, R.M. (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988.CrossRefPubMedGoogle Scholar
  27. Grotewold, E. (2006) The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57, 761–80.CrossRefGoogle Scholar
  28. Guterman, I., Masci, T., Chen, X., Negre, F., Pichersky, E., Dudareva, N., Weiss, D. and Vainstein, A. (2006) Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol. Biol. 60, 555–563. Google Scholar
  29. Gubrium, E.K., Clevenger, D.J., Clark, D.G., Barrett, J.E. and Nell, T.A. (2000) Reproduction and horticultural performance of transgenic ethylene-insensitive petunias. J. Amer. Soc. Hort. Sci. 125, 277–281.Google Scholar
  30. Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A. and Weiss, D. (2002) Rose scent: Genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14, 2325–2338.CrossRefPubMedGoogle Scholar
  31. Hamilton, A.J. and Baulcombe, D.C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.CrossRefPubMedGoogle Scholar
  32. Holopainen, J.K. (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci. 11, 529–533.CrossRefGoogle Scholar
  33. Hori, M. (1998) Repellency of rosemary oil against Myzus persicae in a laboratory and in a screenhouse. J. Chem. Ecol. 24, 1425–1432.CrossRefGoogle Scholar
  34. Jandrew, J. (2002) Nutritional and Fungal Stress Responses of Transgenic Petunias with Delayed Leaf Senescence. M.S. Thesis, University of Florida, Gainesville, Florida.Google Scholar
  35. Jones, M.L., Chaffin, G.S., Eason, J.R. and Clark, D. (2005) Ethylene sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. J. Exp. Bot. 56, 2733–2744.CrossRefPubMedGoogle Scholar
  36. Jorgensen, R.A., Cluster, P.D., English, J., Que, Q. and Napoli, C.A. (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: Comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Molec. Biol. 31, 957–973.CrossRefGoogle Scholar
  37. Kaminaga, Y., Schnepp, J., Peel, G., Kish, C.M., Ben-Nissan, G., Weiss, D., Orlova, I., Lavie, O., Rhodes, D., Wood, K., Porterfield, D.M., Cooper, A.J., Schloss, J.V., Pichersky, E., Vainstein, A. and Dudareva, N. (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281, 23357–23366.CrossRefPubMedGoogle Scholar
  38. Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M. and Angenent, G.C. (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10, 171–182.CrossRefPubMedGoogle Scholar
  39. Khodakovskaya, M., Li, Y., Li, J., Vanková, R., Malbeck, J. and McAvoy, R. (2005) Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia x hybrida and Dendranthema x grandiflorum. J. Exp. Bot. 56, 1165–1175.CrossRefPubMedGoogle Scholar
  40. Knudsen, J.T., Tollsten, L. and Bergstrom, G. (1993) Floral scents, a check-list of volatile compounds isolated by head-space techniques. Phytochem. 33, 253–280.CrossRefGoogle Scholar
  41. Kolosova, N., Gorenstein, N., Kish, C.M. and Dudareva, N. (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13, 2333–2347.CrossRefPubMedGoogle Scholar
  42. Komiyaa, M., Takeuchib, T. and Harada, E. (2006) Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav. Brain Res. 172, 240–249.CrossRefGoogle Scholar
  43. Langston, B.L., Bai, S. and Jones, M.L. (2005) Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during the senescence of ethylene-insensitive (etr1-1) transgenic petunias. J. Exp. Bot. 56, 15–23.CrossRefPubMedGoogle Scholar
  44. Lehrner, J., Eckersberger, C., Walla, P., Postsch, G. and Deecke, L. (2000) Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. Physiol. Behav. 71, 83–86.CrossRefPubMedGoogle Scholar
  45. Linn, F., Heidmann, I., Saedler, H. and Meyer, P. (1990) Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: Role of numbers of integrated gene copies and state of methylation. Mol. Gen. Genet. 222, 329–336.CrossRefPubMedGoogle Scholar
  46. Lücker, J., Bouwmeester, H.J., Schwab, W., Blaas, J., van der Plas, L.H. and Verhoeven, H.A. (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside. Plant J. 27, 315–324.CrossRefPubMedGoogle Scholar
  47. Matzke, M.A., Primig, M., Trnovsky, J. and Matzke, A.J.M. (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8, 643–649.PubMedGoogle Scholar
  48. McKenzie, M.J., Mett, V., Reynolds, P.H.S. and Jameson, P.E. (1998) Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol. 116, 969–977.CrossRefPubMedGoogle Scholar
  49. Medford, J.I., Horgan, R., El-Sawi, Z. and Klee, H.J. (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1, 403–413.CrossRefPubMedGoogle Scholar
  50. Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new petunia flower color generated by transformation of a mutant with a maize gene. Nature 330, 677–678.CrossRefPubMedGoogle Scholar
  51. Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenhof, I. and Saedler, H. (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Molec. Gen.Genet. 231, 345–352.CrossRefPubMedGoogle Scholar
  52. Moehs, C.P., Tian, L., Osteryoung, K.W. and DellaPenna, D. (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molec. Biol. 45, 281–293.CrossRefGoogle Scholar
  53. Mok, D.W.S. and Mok, M.C. (1994) Cytokinins: Chemistry, Activity and Function. CRC Press, Boca Raton, FL.Google Scholar
  54. Mount, S.M. and Chang, C. (2002) Evidence for a plastid origin of plant ethylene receptor genes. Plant Physiol. 130, 10–14.CrossRefPubMedGoogle Scholar
  55. Mourrain, P., van Blokland, R., Kooter, J.M. and Vaucheret, H. (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta 225, 365–379.CrossRefPubMedGoogle Scholar
  56. Murfitt, L.M., Kolosova, N., Mann, C.J. and Dudareva, N. (2000) Purification and characterization of S-adenosyl-L-methionine:Benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch. Biochem. Biophys. 382, 145–151.CrossRefPubMedGoogle Scholar
  57. Nakagawa, H., Jiang, C.J., Sakakibara, H., Kojima, M., Honda, I., Ajisaka, H., Nishijima, T., Koshioka, M., Homma, T., Mander, L.N. and Takatsuji, H. (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J. 41, 512–523.CrossRefPubMedGoogle Scholar
  58. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.CrossRefPubMedGoogle Scholar
  59. Negre, F., Kolosova, N., Knoll, J., Kish, C.M. and Dudareva, N. (2002) Novel S-adenosyl-L-methionine: Salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch. Biochem. Biophys. 406, 261–270.CrossRefPubMedGoogle Scholar
  60. Negre, F., Kish, C.M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D.G. and Dudareva, N. (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15, 2992–3006.CrossRefPubMedGoogle Scholar
  61. Orlova, I., Marshall-Colón, A., Schnepp, J., Wood, B., Varbanova, M., Fridman, E., Blakeslee, J.J., Peer, W.A., Murphy, A.S., Rhodes, D., Pichersky, E. and Dudareva, N. (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18, 3458–3475.CrossRefPubMedGoogle Scholar
  62. Oud, J.S.N., Schneiders, H., Kool, A.J. and van Grinsven, M.Q.J.M. (1995) Breeding of transgenic orange Petunia hybrida varieties. Euphyt. 84, 175–181.CrossRefGoogle Scholar
  63. Pare, P.W. and Tumlinson, J.H. (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325–332.CrossRefPubMedGoogle Scholar
  64. Park, Y.D., Papp, I., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J.M. and Matzke, M.A. (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 9, 183–194.CrossRefPubMedGoogle Scholar
  65. Pichersky, E., Lewinsohn, E. and Croteau, R. (1995) Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Arch. Biochem. Biophys. 316, 803–807.CrossRefPubMedGoogle Scholar
  66. Pott, M.B., Hippauf, F., Saschenbrecker, S., Chen, F., Ross, J., Kiefer, I., Slusarenko, A., Noel, J.P., Pichersky, E., Effmert, U. and Piechulla, B. (2004) Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens. Plant Physiol. 135, 1946–1955.CrossRefPubMedGoogle Scholar
  67. Roman, G., Lubarsky, B., Kieber, J.J., Rothenberg, M. and Ecker, J.R. (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics 139, 1393–1409.PubMedGoogle Scholar
  68. Sakakibara, H. (2006) CYTOKININS: Activity, biosynthesis and translocation. Annu. Rev. Plant Biol. 57, 431–449.CrossRefPubMedGoogle Scholar
  69. Scalliet, G., Lionnet, C., Le Bechec, M., Dutron, L., Magnard, J.L., Baudino, S., Bergougnoux, V., Jullien, F., Chambrier, P., Vergne, P., Dumas, C., Cock, J.M. and Hugueney, P. (2006) Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiol. 140, 18–29.CrossRefPubMedGoogle Scholar
  70. Schell, J., Van Montagu, M., Holsters, M., Zambryski, P., Joos, H., Inzé, D., Herrera-Estrella, L., Depicker, A., De Block, M., Caplan, A., Dhaese, P. and Van Haute, E. (1983) Ti plasmids as experimental gene vectors for plants. In: Advances in Gene Technology: Molecular Genetics of Plants and Animals. Miami Winter Symposia 20, 191–209. Google Scholar
  71. Schomburg, F.M., Bizzell, C.M., Lee, D.J., Zeevaart, J.A. and Amasino, R.M. (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15, 151–163.CrossRefPubMedGoogle Scholar
  72. Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E. and Lewinsohn, E. (2003) Volatile ester formation in roses: Identification of an acetyl-coenzyme A geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiol. 131, 1868–1876.CrossRefPubMedGoogle Scholar
  73. Shibuya, K., Barry, K.G., Ciardi, J.A., Loucas, H.M., Underwood, B.A., Nourizadeh, S., Ecker, J.R., Klee, H.J. and Clark, D.G. (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol. 136, 2900–2912.CrossRefPubMedGoogle Scholar
  74. Simkin, A.J., Underwood, B.A., Auldridge, M., Loucas, H.M., Shibuya, K., Schmelz, E., Clark, D.G. and Klee, H.J. (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 136, 3504–3514.CrossRefPubMedGoogle Scholar
  75. Smart, C.M., Scofield, S.R., Bevan, M.W. and Dyer, T.A. (1991) Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3, 647–656.CrossRefPubMedGoogle Scholar
  76. Subrahmanyam, P., McDonald, D. and Gibbons, R.W. (1982) Variation in Cercospora personatum symptoms on certain cultivars of Arachis hypogaea. Oleagineus 37, 64–67.Google Scholar
  77. Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276, 26405–26410.CrossRefPubMedGoogle Scholar
  78. Thomas, S.G., Phillips, A.L. and Hedden, P. (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci., USA 96, 4698–4703. Google Scholar
  79. Tieman, D.M., Loucas, H.M., Kim, J.Y., Clark, D.G. and Klee, H.J. (2007) Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochem. 68, 2660–2669.CrossRefGoogle Scholar
  80. Tilly, J.J., Allen, D.W. and Jack, T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125, 1647–1657.PubMedGoogle Scholar
  81. Underwood, B.A., Tieman, D.M., Shibuya, K., Dexter, R.J., Loucas, H.M., Simkin, A.J., Sims, C.A., Schmelz, E.A., Klee, H.J. and Clark, D.G. (2005) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol. 138, 255–266.CrossRefPubMedGoogle Scholar
  82. Van Blokland, R., Van der Geest, N., Mol., J.N.M. and Kooter, J.M. (1994) Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6, 861–877.CrossRefGoogle Scholar
  83. van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333, 866–869.CrossRefGoogle Scholar
  84. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N. and Stuitje, A.R. (1990) Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291–299.CrossRefPubMedGoogle Scholar
  85. Verdonk, J.C., de Vos, C.H., Verhoeven, H.A., Haring, M.A., van Tunen, A.J. and Schuurink, R.C. (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochem. 62, 997–1008.CrossRefGoogle Scholar
  86. Verdonk, J.C., Haring, M.A., van Tunen, A.J. and Schuurink, R.C. (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17, 1612–1624.CrossRefPubMedGoogle Scholar
  87. Verdonk, J.C., Shibuya, K., Loucas, H.M., Colquhoun, T.A., Underwood, B.A. and Clark D.G. (2008) Flower-specific expression of the Agrobacterium tumefaciens isopentenyltransferase gene results in radial expansion of floral organs in Petunia hybrid. Plant Biotechnol. J. 6, 694–701. Google Scholar
  88. Wang, W., Esch, J.J., Shiu, S.H., Agula, H., Binder, B.M., Chang, C., Patterson, S.E. and Bleecker, A.B. (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18, 3429–3442.CrossRefPubMedGoogle Scholar
  89. Watson, J.D. and Crick, F.H. (1953a) A structure for deoxyribose nucleic acid. Nature 171, 737–738.Google Scholar
  90. Watson, J.D. and Crick, F.H. (1953b) Genetic implications of the structure of deoxyribonucleic acid. Nature 171, 964–967.Google Scholar
  91. Weaver, L.M., Gan, S., Quirino, B. and Amasino, R.M. (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455–469.CrossRefPubMedGoogle Scholar
  92. Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleeker, A.B., Chang, C., Meyerowitz, E.M. and Klee, H.J. (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotech. 15, 444–447.CrossRefGoogle Scholar
  93. Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155–189.CrossRefGoogle Scholar
  94. Zubko, E., Adams, C.J., Machaekova, I., Malbeck, J., Scollan, C. and Meyer, P. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J. 29, 797–808.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Beverly A. Underwood
    • 1
  • Michelle L. Jones
  • David G. Clark
  1. 1.Department of Environmental HorticultureUniversity of FloridaGainesvilleUSA

Personalised recommendations