Petunia pp 29-49 | Cite as

Petunia as a Model System for the Genetics and Evolution of Pollination Syndromes

  • Thomas Gübitz
  • Maria Elena Hoballah
  • Alexandre Dell’Olivo
  • Cris Kuhlemeier


In recent years Petunia has become a promising model system for studying the genetics and evolution of pollination syndromes. Here we provide a brief introduction to the issue of pollination syndromes, explain why Petunia is a suitable model for its study, present useful background information about pollinators and plants, review recent studies, and discuss questions related to the genetics and evolution of Petunia pollination syndromes.


Quantitative Trait Locus Quantitative Trait Locus Analysis Floral Trait Nectar Production Nectar Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ando, T., Saito, N., Tatsuzawa, F., Kakefuda, T., Yamakage, K., Ohtani, E., Koshi-ishi, M., Matsusake, Y., Kokubun, H., Watanabe, H., Tsukamoto, T., Ueda, Y., Hashimoto, G., Marchesi, E., Asakura, K., Hara, R. and Seki, H. (1999) Floral anthocyanins in wild taxa of Petunia (Solanaceae). Biochem. System. Ecol. 27, 623–650.CrossRefGoogle Scholar
  2. Ando, T., Tatsuzawa, F., Saito, N., Takahashi, M., Tsunashima, Y., Numajiri, H., Watanabe, H., Kokubun, H., Hara, R., Seki, H. and Hashimoto, G. (2000) Differences in the floral anthocyanin content of red petunias and Petunia exserta. Phytochemistry 54, 495–501.Google Scholar
  3. Ando, T. Nomura, M., Tsukahara, J., Watanabe, H., Kokubun, H., Tsukamato, T., Hashimoto, G., Marchesi, E. and Kitching, I.J. (2001) Reproductive isolation in a native population of Petunia sensu Jussieu (Solanaceae). Ann. Bot. 88, 403–413.CrossRefGoogle Scholar
  4. Ando, T., Kokubun, H., Watanabe, H., Tanaka, N., Yukawa, T., Hashimoto, G., Marchesi, E., Suarez, E. and Basualdo, I.L. (2005) Phylogenetic analysis of Petunia sensu Jussieu (Solanaceae) using chloroplast DNA RFLP. Ann. Bot. 96, 289–297.CrossRefPubMedGoogle Scholar
  5. Baker, H. and Baker, I. (1983) A brief historical review of the chemistry of floral nectar. In: B. Bentley and T. Elias (Eds.), The Biology of Nectaries. Columbia University Press, NY, pp. 127–152.Google Scholar
  6. Bradshaw, H.D., Wilbert, S.M., Otto, K.G. and Schemske, D.W. (1995) Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376, 762–765.CrossRefGoogle Scholar
  7. Coyne, J.R. and Orr, H.A. (2004) Speciation. Sinauer, Sunderland, MA.Google Scholar
  8. Dobson, H.E.M. (1994) Floral volatiles in insect biology. In: E.A. Bernays (Ed.), Insect Plant Interactions. CRC Press, Boca Raton, pp. 47–81.Google Scholar
  9. Faegri, K. and van der Pijl, L. (1979) The Principles of Pollination Ecology. Pergamon Press, Oxford.Google Scholar
  10. Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R. and Thompson, J.D. (2004) Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403.CrossRefGoogle Scholar
  11. Galliot, C., Stuurman, J. and Kuhlemeier, C. (2006a) The genetic dissection of floral pollination syndromes. Curr. Opin. Plant Biol. 9, 78–82.Google Scholar
  12. Galliot, C., Hoballah, M.E., Kuhlemeier, C. and Stuurman, J. (2006b) Genetic control of flower size and nectar volume in Petunia pollination syndromes. Planta 225, 203–212.Google Scholar
  13. Ge, Y.X., Angenent, G.C., Wittich, P.E., Peters, J., Franken, J., Busscher, M., Zhang, L.M., Dahlhaus, E., Kater, M.M., Wullems, G.J. and Creemers-Molenaar, T. (2000) NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant J. 24, 725–734.CrossRefPubMedGoogle Scholar
  14. Ge, Y.X., Angenent, G.C., Dahlhaus, E., Franken, J., Peters, J., Wullems, G.J. and CreemersMolenaar, T. (2001) Partial silencing of the NEC1 gene results in early opening of anthers in Petunia hybrida. Mol. Gen. Genom. 265, 414–423.CrossRefGoogle Scholar
  15. Gerats, A.G.M., Huits, H., Vrijlandt, E., Maraña, C., Souer, E. and Beld, M. (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of Petunia. Plant Cell 2, 1121–1128.CrossRefPubMedGoogle Scholar
  16. Herrera, C.M. (1996) Floral traits and plant adaptation to insect pollinators: A devil's advocate approach. In: D.G. Lloyd and S.C.H. Barrett (Eds.), Floral Biology: Studies on Floral Evolution in Animal Pollinated Plants. Chapman and Hall, NY, pp. 65–87.Google Scholar
  17. Hoballah, M.E., Stuurman, J., Turlings, T.C.J., Guerin, P.M., Connétable, S. and Kuhlemeier, C. (2005) The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta 222, 141–150.CrossRefPubMedGoogle Scholar
  18. Hoballah, M.E., Gübitz, T., Stuurman, J., Broger, L., Barone, M., Mandel, T., Dell'Olivo, A., Arnold, M. and Kuhlemeier, C. (2007) Single gene-mediated shift in pollinator attraction in petunia. Plant Cell 19, 779–790.CrossRefPubMedGoogle Scholar
  19. Holton, T.A., Brugliera, F. and Tanaka, Y. (1993a) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J. 4, 1003–1010.Google Scholar
  20. Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G.T., Lu, C.Y., Farcy, E., Stevenson, T.W. and Cornish, E.C. (1993b) Cloning and expression of cytochrome-P450 genes controlling flower color. Nature 366, 276–279.Google Scholar
  21. Johnson, S.D. and Steiner, K.E. (2000) Generalization versus specialization in plant pollination systems. Tree 15, 140–143.PubMedGoogle Scholar
  22. Kaczorowski, R.L., Gardener, M.C. and Holtsford, T.P. (2005) Nectar traits in Nicotiana section Alatae (Solanaceae) in relation to floral traits, pollinators, and mating system. Amer. J. Bot. 92, 1270–1283.CrossRefGoogle Scholar
  23. Kessler, D. and Baldwin, I.T. (2007) Making sense of nectar scents: The effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J. 49, 840–854.CrossRefPubMedGoogle Scholar
  24. Kondo, M., Oyama-Okubo, N., Ando, T., Marchesi, E. and Nakayama, M. (2006) Floral scent diversity is differently expressed in emitted and endogenous components in Petunia axillaris lines. Ann. Bot. (Lond.) 98, 1253–1259.CrossRefGoogle Scholar
  25. Kroon, A.R. (2004) Transcription regulation of anthocyanin biosynthesis in Petunia hybrida. Vrije Universiteit, Amsterdam.Google Scholar
  26. Kulcheski, F.R., Muschner, V.C., Lorenz-Lemke, A.P., Stehmann, J.R., Bonatto, S.L., Salzano, F.M. and Freitas, L.B. (2006) Molecular phylogenetic analysis of Petunia juss. (Solanaceae). Genetica 126, 314.CrossRefGoogle Scholar
  27. Lorenz-Lemke, A.P., Mader, G., Muschner, V.C., Stehmann, J.R., Bonatto, S.L., Salzano, F.M. and Freitas, L.B. (2006) Diversity and natural hybridization in a highly endemic species of Petunia (Solanaceae): A molecular and ecological analysis. Molec. Ecol. 15, 4487–4497.CrossRefGoogle Scholar
  28. Proctor, M., Yeao, P. and Lack, A. (1996) The Natural History of Pollination. Harper Collins, London.Google Scholar
  29. Pyke, G.H. (1991) What does it cost a plant to produce flower volatiles? Nature 350, 58–59.CrossRefGoogle Scholar
  30. Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J.N.M. and Koes, R. (1999) Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell 11, 1433–1444.CrossRefPubMedGoogle Scholar
  31. Raguso, R.A. and Willis, M.A. (2002) Synergy between visual and olfactory cues in nectar feeding by naïve hawkmoths, Manduca sexta. An. Behav. 64, 685–695.CrossRefGoogle Scholar
  32. Raguso, R.A. and Willis, M.A. (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. An. Behav. 69, 407–418.CrossRefGoogle Scholar
  33. Rodríguez-Gironés, M.A. and Santamaría, L. (2004) Why are so many bird flowers red? PLoS Biology 2, 1515–1519. Google Scholar
  34. Schuurink, R.C., Haring, M.A. and Clark, D.G. (2006) Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Pl. Sci. 11, 20–25.CrossRefGoogle Scholar
  35. Stehmann, J.R. (1987) Petunia exserta (Solanaceae): Uma nova espécie do Rio Grande Do Sul, Brasil (Belo Horizonte: CETEC/SNE), pp. 19–21.Google Scholar
  36. Stehmann, J.R. and Semir, J. (2005) New species of Calibrachoa and Petunia (Solanceaea) from subtropical South America. In: T.B. Croat (Ed.), Festschrift for William G. Darcy: The Legacy of a Taxonomist. Missouri Botanical Garden Press, St. Louis.Google Scholar
  37. Stuurman, J., Hoballah, M.E., Broger, L., Moore, J., Basten, C. and Kuhlemeier, C. (2004) Dissection of floral pollination syndromes in Petunia. Genet. 168, 1585–1599.CrossRefGoogle Scholar
  38. Stuurman, J. and Kuhlemeier, C. (2005) Stable two-element control of dTph1 transposition in mutator strains of Petunia by an inactive ACT1 introgression from a wild species. Plant J. 41, 945–955.CrossRefPubMedGoogle Scholar
  39. Thakar, J.D., Kunte, K., Chauhan, A.K., Watve, A.V. and Watve, M.G. (2003) Nectarless flowers: Ecological correlates and evolutionary stability. Oecol. 136, 565–570.CrossRefGoogle Scholar
  40. Tsukamoto, T., Ando, T., Kurata, M., Watanabe, H., Kokubun, H., Hashimoto, G. and Marchesi, A. (1998) Resurrection of Petunia occidentalis R.E. Fr. (Solanaceae) inferred from a cross compatibility study. J. Jap. Bot. 73, 15–21.Google Scholar
  41. van Schie, C.C.N., Haring, M.A. and Schuurink, R.C. (2006) Regulation of terpenoid and benzenoid production in flowers. Curr. Opin. Plant Biol. 9, 203–208.CrossRefPubMedGoogle Scholar
  42. van Tunen, A.J., Mur, L.A., Recourt, K., Gerats, A.G.M. and Mol, J.N.M. (1991) Regulation and manipulation of flavonoid gene expression in anthers of petunia – the molecular basis of the Po mutation. Plant Cell 3, 39–48.CrossRefPubMedGoogle Scholar
  43. Verdonk, J.C., Haring, M.A., van Tunen, A.J. and Schuurink, R.C. (2005) ODORANT1 regulates fragrance biosynthesis in Petunia flowers. Plant Cell 17, 1612–1624.CrossRefPubMedGoogle Scholar
  44. Waser, N.M., Chittka, L., Price, M.V., Williams, N.M. and Ollerton, J. (1996) Generalization in pollination systems, and why it matters. Ecol. 77, 1043–1060.CrossRefGoogle Scholar
  45. White, R.H., Stevenson, R.D., Bennett, R.R., Cutler, D.E. and Haber, W.A. (1994) Wavelength discrimination and the role of ultraviolet vision in the feeding behavior of hawkmoths. Biotrop. 26, 427–435.CrossRefGoogle Scholar
  46. Whittall, J.B. and Hodges, S.A. (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706–709.CrossRefPubMedGoogle Scholar
  47. Wisjman, H.J.W. (1983) On the interrelationships of certain species of Petunia II. Experimental data: Crosses between different taxa. Acta Bot. Neerl. 32, 97–107.Google Scholar
  48. Wittmann, D., Radtke, R., Cure, J.R. and Schifino-Wittmann, M.T. (1990) Coevolved reproductive strategies in the oligolectic bee Callonychium petuniea (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. Z. Zool. Syst. Evolut. Forsch. 28, 157–165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas Gübitz
    • 1
  • Maria Elena Hoballah
  • Alexandre Dell’Olivo
  • Cris Kuhlemeier
  1. 1.Institute of Plant Sciences, Universität BernBernSwitzerland

Personalised recommendations