Petunia pp 395-409 | Cite as

Transformation and Regeneration of Petunia

  • Anthony J. Conner
  • Nick W. Albert
  • Simon C. Deroles


Petunia has played a central role in transformation research since the earliest reports of plant transformation. It was a key model system when the first definitive accounts of Agrobacterium-mediated transformation and direct DNA transfer unequivocally established the transfer and expression of foreign genes in plants. Petunia subsequently played an important role in elucidating many of the characteristics of plant transformation, including unique sites of insertion, variable expression levels, and modified T-DNA structures among independently derived transformants. It was central in the demonstration of transient expression immediately following co-cultivation and transgene-induced silencing of gene expression, two phenomena currently of great importance in studies of gene function. One of the key reasons for the importance of Petunia in plant transformation research has been the selection for and/or identification of genotypes well suited to growth and regeneration in culture, for example, Petunia Mitchell, for which a simple transformation protocol is described. Agro-infiltration for transient gene expression and the development of intragenic vectors to effect gene transfer without the integration of “foreign” DNA represent recent advancements in Petunia transformation. Ease of transformation, coupled with other favorable biological characteristics, ensure that Petunia will remain a valuable model system for studies of gene function in plants.


Transgenic Plant Transient Expression Plant Transformation Direct Gene Transfer Petunia Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert, N.W. (2006) Light-induced Anthocyanin Pigmentation in Transgenic Lc Petunia. M.Sc. thesis, Massey University, Palmerston North, New Zealand.Google Scholar
  2. Angenent, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44.CrossRefPubMedGoogle Scholar
  3. Ausubel, F.M., Bahnsen, K., Hanson, M., Mitchell, A. and Smith, H.J. (1980) Cell and tissue culture of haploid and diploid petunia “Mitchell”. Plant Mol. Biol. Newsletter 1, 26–32.Google Scholar
  4. Ballas, N., Zakai, N., Sela, I. and Loyter, A. (1988) Liposomes bearing a quaternary ammonium detergent as an efficient vehicle for functional transfer of TMV-RNA into plant protoplasts. Biochim. Biophys. Acta 939, 8–18.CrossRefGoogle Scholar
  5. Bevan, M.W., Flavell, R.B. and Chilton, M.D. (1983) A chimaeric antibiotic-resistance gene as a selectable marker for plant-cell transformation. Nature 304, 184–187.CrossRefGoogle Scholar
  6. Bianchi, F. and Walet-Foederer, H.G. (1974) An investigation into the anatomy of the shoot apex of Petunia hybrida in connection with the results of transformation experiments. Acta Bot. Neerl. 23, 1–6.Google Scholar
  7. Bradley, J.M., Davies, K.M., Deroles, S.C., Bloor, S.J. and Lewis, D.H. (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13, 381–392.CrossRefGoogle Scholar
  8. Buising, C.M. and Benbow, R.M. (1994) Molecular analysis of transgenic plants generated by microprojectile bombardment: Effect of petunia transformation booster sequence. Mol. Gen. Genet. 243, 71–81.CrossRefPubMedGoogle Scholar
  9. Clark, K.R. and Sims, T.L. (1994) The S-ribonuclease gene of Petunia hybrida is expressed in nonstylar tissue, including immature anthers. Plant Physiol. 106, 25–36.CrossRefPubMedGoogle Scholar
  10. Conner, A.J., Glare, T.R. and Nap, J.P. (2003) The release of genetically modified crops into the environment: II. Overview of ecological risk assessment. Plant J. 33, 19–46.CrossRefPubMedGoogle Scholar
  11. Conner, A.J., Barrell, P.J., Baldwin, S.J., Lokerse, A.S., Cooper, P.A., Erasmuson, A.K., Nap, J.P. and Jacobs, J.M.E. (2007) Intragenic vectors for gene transfer without foreign DNA. Euphyt. 154, 341–353.CrossRefGoogle Scholar
  12. Davey, M.R., Cocking, E.C., Freeman, J., Pearce, N. and Tudor, I. (1980) Transformation of Petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci. Lett. 18, 307–313.CrossRefGoogle Scholar
  13. Deroles, S.C. and Gardner, R.C. (1988a) Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol. 11, 355–364.Google Scholar
  14. Deroles, S.C. and Gardner, R.C. (1988b) Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol. 11, 365–377.Google Scholar
  15. Deroles, S.C., Bradley, J.M., Davies, K.M. and Schwinn, K.E. (1996) Genetic transformation in Petunia. In: Y.P.S. Bajaj (Ed.), Plant Protoplasts and Genetic Engineering VII. Springer-Verlag, Berlin, pp. 270–279.Google Scholar
  16. Deroles, S.C., Boase, M.R., Lee, C.E. and Peters, T.A. (2002) Gene transfer to plants. In: A. Vainstein (Ed.), Breeding for Ornamentals: Classical and Molecular Approaches. Kluwer Academic, Dordrecht, pp. 155–196.Google Scholar
  17. Dowd, P.E., McCubbin, A.G., Wang, X., Verica, J.A., Tsukamoto, T., Ando, T. and Kaof, T-H. (2000) Use of Petunia inflata as a model for the study of solanaceous type self-incompatibility. Ann. Bot. 85, 87–93.CrossRefGoogle Scholar
  18. Draper, J., Davey, M.R., Freeman, J.P., Cocking, E.C. and Cox, B.J. (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts. Plant Cell Physiol. 23, 451–458.Google Scholar
  19. Esposito, S., Vitale, S., Corazza, L., Galante, C., Lorito, M. and Filippone, E. (2002) Resistance against fungal diseases in Petunia x hybrida: Application of "gene therapy". Italus Hortus 9, 80–84.Google Scholar
  20. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffmann, N.L. and Woo, S.C. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci., USA 80, 4803–4807.Google Scholar
  21. Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.CrossRefPubMedGoogle Scholar
  22. Gleave, A.P. (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203–1207.CrossRefPubMedGoogle Scholar
  23. Gould, J.H., Ulian, E.C. and Smith, R.H. (1993) Transformation of petunia and corn plants (Petunia hybrida and Zea mays) using Agrobacterium tumefaciens and the shoot apex. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 23, Plant Protoplasts and Genetic Engineering IV. Springer, Berlin, pp. 302–314.Google Scholar
  24. Griesbach, R.J. (1987) Chromosome-mediated transformation via microinjection. Plant Sci. 50, 69–78.CrossRefGoogle Scholar
  25. Gubrium, E.K., Clevenger, D.J., Clark, D.G., Barrett, J.E. and Nell, T.A. (2000) Reproduction and horticultural performance of transgenic ethylene-insensitive petunias. J. Am. Soc. Hort. Sci. 125, 277–281.Google Scholar
  26. Herrera-Estrella, L., de Block, M., Messens, E., Hernalsteens, J.P., van Montagu, M. and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987–95.PubMedGoogle Scholar
  27. Hess, D. (1969a) Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bie Petunia hybrida. Z. Pflanzenphysiol. 60, 348–358.Google Scholar
  28. Hess, D. (1969b) Versuche zur transformation an höheren pflanzen: Wiederholung der anthocyan-induktion bei Petunia und erste charakterisierung des transformierenden Prinzips. Z. Pflanzenphysiol. 61, 286–298.Google Scholar
  29. Hess, D. (1970) Versuche zur Transformation an höheren pflanzen: Genetische charakterisierung einiger mutmässlich transformierter pflanzen. Z. Pflanzenphysiol. 63, 31–43.Google Scholar
  30. Hess, D. (1972) Versuche zur transformation an höheren pflanzen: Nachweis von heterozygoten in versuchen zur transplantation von genen für anthocyansynthese bei Petunia hybrida. Z. Pflanzenphysiol. 66, 155–166.Google Scholar
  31. Hess, D. (1973) Transformationsversuche an höheren pflanzen: Untersuchungen zur realisation des exosomen-modells der transformation bei Petunia hybrida. Z. Pflanzenphysiol. 68, 432–440.Google Scholar
  32. Hess, D., Lörz, H. and Weisert, E.M. (1974a) Die aufnahme bakterieller DNA in quellende und keimende pollen von Petunia hybrida und Nicotiana glauca. Z. Pflanzenphysiol. 74, 52–63.Google Scholar
  33. Hess, D., Gresshoff, P.M., Fielitz, U. and Gleiss, D. (1974b) Uptake of protein and bacteriophage into swelling and germinating pollen of Petunia hybrida. Z. Pflanzenphysiol. 74, 371–376.Google Scholar
  34. Hess, D. (1977) Cell modification by DNA uptake. In: J. Reinert and Y.S. Bajaj (Eds.), Applied and Fundamental Aspects of Plant Cell Tissue and Organ Culture. Springer-Verlag, Berlin, pp. 506–535.Google Scholar
  35. Hoekema, A., Hirsh, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303, 179–80.CrossRefGoogle Scholar
  36. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes to plants. Science 227, 1229–1231.CrossRefGoogle Scholar
  37. Horsch, R.B. and Klee, H.J. (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci., USA 83, 4428–4432.Google Scholar
  38. Izhar, S. and Power, J.B. (1977) Genetical studies with petunia leaf protoplasts. I Genetic variation to specific growth hormones and possible genetic control on stages of protoplast development in culture. Plant Sci. Lett. 8, 375–383.CrossRefGoogle Scholar
  39. Janssen, B.J. and Gardner, R.C. (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 14, 61–72.CrossRefGoogle Scholar
  40. Jones, J.D.G., Gilbert, D.E., Grady, K.L. and Jorgensen, R.A. (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207, 478–485.CrossRefGoogle Scholar
  41. Jorgenson, R.A., Snyder, C. and Jones, J.D.G. (1987) T-DNA is organised predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207, 471–477.CrossRefGoogle Scholar
  42. Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677–678.CrossRefPubMedGoogle Scholar
  43. Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenoff, I. and Saedler, H. (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231, 345–352.CrossRefPubMedGoogle Scholar
  44. Meyer, P., Heidmann, I. and Niedenhof, I. (1993) Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4, 89–100.CrossRefPubMedGoogle Scholar
  45. Meyer, P. and Heidmann, I. (1994) Epigenetic variants of a transgenic petunia line show hypermethylation in transgene-DNA: An indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243, 390–399.PubMedGoogle Scholar
  46. Mitchell, A.Z., Hanson, M.R., Skvirsky, R.C. and Ausubel, F.M. (1980) Anther culture of Petunia: Genotypes with high frequency of callus, root, or plantlet formation. Z. Pflanzenphysiol. 100, 131–146.Google Scholar
  47. Mursashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  48. Nap, J.P., Metz, P.L.J., Escaler, M. and Conner, A.J. (2003) The release of genetically modified crops into the environment: I. Overview of current status and regulations. Plant J. 33, 1–18.CrossRefPubMedGoogle Scholar
  49. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.CrossRefPubMedGoogle Scholar
  50. Oud, J.S.N., Schneiders, H., Kool, A.J. and Van Grinsven, M.Q.J.M. (1995) Breeding of transgenic orange Petunia hybrida varieties. Euphyt. 85, 403–409.CrossRefGoogle Scholar
  51. Paszkowski, J., Shillito, R.D., Saul, M., Mandak, V., Hohn, T., Hohn, B. and Potrykus, I. (1984) Direct gene transfer to plants. EMBO J. 3, 2717–2722.PubMedGoogle Scholar
  52. Petolino, J. (2002) Direct DNA delivery into intact cells and tissues. In: G.G. Khachatourians, A. McHughen, R. Scorza, W.K. Nip and Y.H. Hui (Eds.), Transgenic Plants and Crops. Marcel Dekker Inc., NY, pp. 137–143.Google Scholar
  53. Potrykus, I., Shillito, R.D., Saul, M. and Paszkowski, J. (1985) Direct gene transfer: State of the art and future potential. Plant Mol. Biol. Rep. 3, 117–128.CrossRefGoogle Scholar
  54. Raquin, C. (1982) Genetic control of embryo production and embryo quality in anther culture of Petunia. Theor. Appl. Genet. 63, 151–154.CrossRefGoogle Scholar
  55. Shang, Y.J., Schwinn, K.E., Bennett, M.J., Hunter, D.A., Waugh, T.L., Pathirana, N.N., Brummell, D.A., Jameson, P.E. and Davies, K.M. (2007) Methods for transient assay of gene function in floral tissues. Plant Methods 3:1 doi:10.1186/1746-4811/3/1.Google Scholar
  56. Skvirsky, R.C., Hanson, M.R. and Ausubel, F.M. (1984) Intraspecific genetic variation in cytokinin-controlled shoot morphogenesis from explants of Petunia hybrida. Plant Sci. Lett. 35, 237–246.CrossRefGoogle Scholar
  57. Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic engineering to modify flower color. Plant and Cell Phys. 39, 1119–1126.Google Scholar
  58. Thomas, J.C., Akroush, A.M. and Adamus, G. (1999) The indole alkaloid tryptamine produced in transgenic Petunia hybrida. Plant Phys. Biochem. 37, 665–670.CrossRefGoogle Scholar
  59. Tjokrokusumo, D., Heinrich, T., Wylie, S., Potter, R. and McComb, J. (2000) Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep. 19, 792–797.CrossRefGoogle Scholar
  60. Ulian, E.C., Magill, J.M. and Smith, R.H. (1994) Expression and inheritance pattern of two foreign genes in Petunia. Theor. Appl. Genet. 88, 433–440.CrossRefGoogle Scholar
  61. van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower colour pigmentation. Nature 333, 866–869.CrossRefGoogle Scholar
  62. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. (1990) Flavonoid genes in Petunia: Addition of a limited number of gene copies may lead to a supression of gene expression. Plant Cell 2, 291–299.CrossRefPubMedGoogle Scholar
  63. Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. (1998) Transgene-induced gene silencing in plants. Plant J. 16, 651–659.CrossRefPubMedGoogle Scholar
  64. Wallroth, M., Gerats, A.G.M., Rogers, S.G., Fraley, R.T. and Horsch, R.B. (1986) Chromosomal location of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202, 6–15.CrossRefGoogle Scholar
  65. Winefield, C., Lewis, D., Arathoon, S. and Deroles, S. (1999) Alteration of Petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol. Breed. 5, 543–551.CrossRefGoogle Scholar
  66. Ylstra, B., Busscher, J., Franken, J., Hollman P.C.H., Mol, J.N.M. and van Tunen, A.J. (1994) Flavonols and fertilization in Petunia hybrida: Localization and mode of action during pollen-tube growth. Plant J. 6, 201–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anthony J. Conner
    • 1
  • Nick W. Albert
  • Simon C. Deroles
  1. 1.Private BagNew Zealand Institute for Crop and Food ResearchNew Zealand

Personalised recommendations