Petunia pp 365-379 | Cite as

Identification and Exploitation of Petunia Transposable Elements: A Brief History

  • Tom Gerats


Although it is generally accepted that transposable genetic elements are ubiquitous, their full mutagenic capacity has been exploited in only a few species. Among plants these are, most notably, maize, Antirrhinum and Petunia. Representatives of all three major groups of class II elements, viz., HAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we describe the Petunia two-element Act1-dTph1 system and the development of its application in forward and reverse genetics studies.


Transposable Element Mutant Phenotype Terminal Inverted Repeat Reversion Frequency Insertion Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R. and Walbot, V. (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10, 1135–1149.CrossRefPubMedGoogle Scholar
  2. Ballinger, D.G. and Benzer, S. (1989) Targeted gene mutations in Drosophila. Proc. Natl. Acad. Sci., USA 86, 9402–9406.Google Scholar
  3. Bianchi, F., De Boer, R. and Pompe, A.J. (1974) Investigation into spontaneous reversions in a dwarf mutant of Petunia-hybrida in connection with interpretation of results of transformation experiments. Acta Bot. Neerl. 23, 691–700.Google Scholar
  4. Bianchi, F., Cornelissen, P.T.J., Gerats, A.G.M. and Hogervorst, J.M.W. (1978) Regulation of gene action in Petunia hybrida: Unstable alleles of a gene for flower colour. Theor. Appl. Genet. 53, 157–167.CrossRefGoogle Scholar
  5. Cartolano, M., Castillo, R., Efremova, N., Kuckenberg, M., Zethof, J., Gerats, T., Schwarz-Sommer, Z. and Vandenbussche, M. (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat. Genet. 39, 901–905.CrossRefPubMedGoogle Scholar
  6. Cornu, A. (1977) Induced unstable systems in petunia. Mutation Res. 42, 235–248.Google Scholar
  7. Dale, E.E. (1941) A reversible variegation in petunia. J. Hered. 32, 123–126.Google Scholar
  8. De Keukeleire, P., Maes, T., Sauer, M., Zethof, J., Van Montagu, M. and Gerats, T. (2001) Analysis by transposon display of the behaviour of the dTph1element family during ontogeny and inbreeding of Petunia hybrida. Mol. Genet. Genom. 265, 72–81.CrossRefGoogle Scholar
  9. De Keukeleire, P., De Schepper, S., Gielis, J. and Gerats, T. (2004) A PCR-based assay to detect HAT-like transposon sequences in plants. Chromos. Res. 12, 117–123.CrossRefGoogle Scholar
  10. de Vetten, N., Quattrocchio, F., Mol, J. and Koes, R. (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Devel. 11, 1422–1434.CrossRefPubMedGoogle Scholar
  11. de Vetten, N., ter Horst, J., van Schaik, H.P., de Boer, A., Mol, J. and Koes, R. (1999) A cytochrome b5 is required for full activity of flavonoid 3',5ʹ-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc. Natl. Acad. Sci., USA 96, 778–783.Google Scholar
  12. Doodeman, M., Boersma, E.A., Koomen, W. and Bianchi, F. (1984a) Genetic analysis of instability in Petunia hybrida. 1. A highly unstable mutation induced by a transposable element inserted at the An1 locus for flower colour. Theor. Appl. Genet. 67, 345–355.Google Scholar
  13. Doodeman, M., Bino, R., Uytewaal, B. and Bianchi, F. (1984b) Genetic analysis of instability in Petunia hybrida. 4. The effect of environmental factors on the reversion rate of unstable alleles. Theor. Appl. Genet. 69, 489–495.Google Scholar
  14. Doodeman, M., Gerats, A.G.M., Schram, A.W., de Vlaming, P. and Bianchi, F. (1984c) Genetic analysis of instability in Petunia hybrida. 2. Unstable mutations at different loci as the result of transpositions of the genetic element inserted at the An1 locus. Theor. Appl. Genet. 67, 357–366.Google Scholar
  15. Ferrario, S., Busscher, J., Franken, J., Gerats, T., Vandenbussche, M., Angenent, G.C. and Immink, R.G. (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490–1505.CrossRefPubMedGoogle Scholar
  16. Garrido, D., Busscher, J. and van Tunen, A.J. (2006) Promoter activity of a putative pollen monosaccharide transporter in Petunia hybrida and characterization of a transposon insertion mutant. Protoplasma 228, 3–11.CrossRefPubMedGoogle Scholar
  17. Ge, Y.X., Angenent, G.C., Dahlhaus, E., Franken, J., Peters, J., Wullems, G.J. and Creemers-Molenaar, J. (2001) Partial silencing of the NEC1 gene results in early opening of anthers in Petunia hybrida. Mol. Genet. Genom. 265, 414–423.CrossRefGoogle Scholar
  18. Gerats, A.G.M., Wallroth, M., de Vlaming, P. and Bianchi, F. (1985) A two-element system controls instability at the An3 locus in Petunia hybrida. Theor. Appl. Genet. 70, 245–247.CrossRefGoogle Scholar
  19. Gerats, A., Beld, M., Huits, H. and Prescott, A. (1989) Gene tagging in Petunia-hybrida using homologous and heterologous transposable elements. Devel. Genet. 10, 561–568.CrossRefGoogle Scholar
  20. Gerats, A.G., Huits, H., Vrijlandt, E., Marana, C., Souer, E. and Beld, M. (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2, 1121–1128.CrossRefPubMedGoogle Scholar
  21. Harrison, B.J. and Fincham, J.R.S. (1964) Instability at the Pa1 locus in Antirrhinum majus. 1. Effects of environment on frequencies of somatic and germinal mutation. Hered. 19, 237–258.CrossRefGoogle Scholar
  22. Hess, D. (1973) Versuche zur transformation an hoheren pflanzen: Untersuchungen zur realization des exosomen-modells der transformation bei Petunia hybrida. Z. Pflanzen-physiol. 68, 432–440.Google Scholar
  23. Huits, H.S.M., Wijsman, H.J.W., Koes, R.E. and Gerats, A.G.M. (1995) Genetic characterization of Act1, the activator of a non-autonomous transposable element from Petunia hybrida. Theor. Appl. Genet. 91, 110–117.CrossRefGoogle Scholar
  24. Kaiser, K. and Goodwin, S.F. (1990) “Site-selected” transposon mutagenesis of Drosophila. Proc. Natl. Acad. Sci., USA 87, 1686–1690.CrossRefPubMedGoogle Scholar
  25. Koes, R., Souer, E., van Houwelingen, A., Mur, L., Spelt, C., Quattrocchio, F., Wing, J., Oppedijk, B., Ahmed, S., Maes, T. et al. (1995) Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl. Acad. Sci., USA 92, 8149–8153.Google Scholar
  26. Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J. and Koes, R. (1994) Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: Characterization of insertion sequences in two mutant alleles. Plant J. 5, 69–80.CrossRefPubMedGoogle Scholar
  27. Maes, T., Van de Steene, N., Zethof, J., Karimi, M., D’Hauw, M., Mares, G., Van Montagu, M. and Gerats, T. (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13, 229–244.CrossRefPubMedGoogle Scholar
  28. Malinowski, E. and Sachs, M. (1916) Die vererbung einiger blumenfarben und blumengestalten bei petunia. Comptes Rendus Se. Soc. Sciet. Varsovie.Google Scholar
  29. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chenm, Y.-J., Chen, Z. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  30. Martin, C. and Gerats, T. (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5, 1253–1264.CrossRefPubMedGoogle Scholar
  31. Matsubara, K., Kodama, H., Kokubun, H., Watanabe, H. and Ando, T. (2005) Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene 358, 121–126.CrossRefPubMedGoogle Scholar
  32. McClintock, B. (1983) The significance of responses of the genome to challenge. Science 226, 792–801.CrossRefGoogle Scholar
  33. Nakagawa, H., Ferrario, S., Angenent, G.C., Kobayashi, A. and Takatsuji, H. (2004) The petunia ortholog of Arabidiopsis SUPERMAN plays a distinct role in floral organ morphogenesis. Plant Cell 16, 920–932.CrossRefPubMedGoogle Scholar
  34. Nakajima, T., Matsubara, K., Kodama, H., Kokubun, H., Watanabe, H. and Ando, T. (2005) Insertion and excision of a transposable element governs the red floral phenotype in commercial petunias. Theor. Appl. Genet. 110, 1038–1043,CrossRefPubMedGoogle Scholar
  35. Noreen, F., Akbergenov, R., Hohn, T. and Richert-Pöggeler, K.R. (2007) Distinct expression of endogenous petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant J. 50, 219–229.CrossRefPubMedGoogle Scholar
  36. Olsen, A.H., Ernst, H.A., Leggio, L.L. and Skriver, K. (2005) NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87.CrossRefPubMedGoogle Scholar
  37. Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J. and Koes, R. (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11, 1433–1444.CrossRefPubMedGoogle Scholar
  38. Quattrocchio, F., Verweij, W., Kroon, A., Spelt, C., Mol, J. and Koes, R. (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18, 1274–1291.CrossRefPubMedGoogle Scholar
  39. Renckens, S., De Greve, H., Beltran-Herrera, J., Toong, L.T., Deboeck, F., De Rycke, R., Van Montagu, M. and Hernalsteens, J.P. (1996) Insertion mutagenesis and study of transposable eolements using a new unstsable virescent seedling allele for isolation of haploid petunia lines. Plant J. 10, 533–544.CrossRefPubMedGoogle Scholar
  40. Rijpkema, A.S., Royaert, S., Zethof, J., van der Weerden, G., Gerats, T. and Vandenbussche, M. (2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 1819–1832.CrossRefPubMedGoogle Scholar
  41. Snowden, K.C. and Napoli, C.A. (1998) Ps1: A novel Spm-like transposable element from Petunia hybrida.Plant J. 14, 43–54.CrossRefPubMedGoogle Scholar
  42. Snowden, K.C., Simkin, A.J., Janssen, B.J., Templeton, K.R., Loucas, H.M., Simons, J.L., Karunairetnam, S., Gleave, A.P., Clark, D.G. and Klee, H.J. (2005) The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DOXYGENASE8gene affects branch production and plays a role in leaf senescence, root growth and flower development. Plant Cell 17, 746–759.CrossRefPubMedGoogle Scholar
  43. Souer, E., Quattrocchio, F., de Vetten, N., Mol, J. and Koes, R. (1995) A general method to isolate genes tagged by a high copy number transposable element. Plant J. 7, 677–685.CrossRefPubMedGoogle Scholar
  44. Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell 85, 159–170.CrossRefPubMedGoogle Scholar
  45. Souer, E., van der Krol, A., Kloos, D., Spelt, C., Bliek, M., Molm, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Devel. 125, 733–742.Google Scholar
  46. Spelt, C., Quattrocchio, F., Mol, J.N. and Koes, R. (2000) anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12, 1619–1632.CrossRefPubMedGoogle Scholar
  47. Spelt, C., Quattrocchio, F., Molm, J. and Koes, R. (2002) ANTHOCYANIN1 of Petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135.CrossRefPubMedGoogle Scholar
  48. Stuurman, J., Jäggi, F. and Kuhlemeier, C. (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Devel. 16, 2213–2218.CrossRefPubMedGoogle Scholar
  49. Stuurman, J. and Kuhlemeier, C. (2005) Stable two-element control of dTph1 transposition in mutator strains of Petunia by an inactive ACT1 introgression from a wild species. Plant J. 41, 945–955.CrossRefPubMedGoogle Scholar
  50. Tobeña-Santamaria, R., Bliek, M., Ljung, K., Sandberg, G., Mol, J.N.M., Souer, E. and Koes, R. (2002) FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Devel. 16, 753–763.CrossRefPubMedGoogle Scholar
  51. Van den Broeck, D., Maes, T., Sauer, M., Zethof, J., De Keukeleire, P., D’Hauw, M., Van Montagu, M. and Gerats, T. (1998) Transposon Display identifies individiual transposable elements in high copy number lines. Plant J. 13, 121–129.PubMedGoogle Scholar
  52. van Houwelingen, A., Souer, E., Spelt, K., Kloos, D., Mol, J. and Koes, R. (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J. 13, 39–50.PubMedGoogle Scholar
  53. van Houwelingen, A., Souer, E., Molm, J. and Koes, R. (1999) Epigenetic interactions among three dTph1 transposons in two homologous chromosomes activate a new excision-repair mechanism in Petunia. Plant Cell 11, 1319–1336.CrossRefPubMedGoogle Scholar
  54. Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornielli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.C. and Gerats, T. (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral identity functions require SEPPALATA-like MADS box genes in petunia. Plant Cell 15, 2680–2693.CrossRefPubMedGoogle Scholar
  55. Vandenbussche, M., Janssen, A., Zethof, J., van Orsouw, N., Peters, J.L., van Eijk, M.J.T., Rijpkema, A.S., Schneiders, H., Santhanam, P., de Been, M., van Tunen, A. and Gerats, T. (2008) Generation of a 3D indexed petunia insertion database for reverse genetics. Plant J. 54, 1105–1114.CrossRefPubMedGoogle Scholar
  56. Verhoeven, T., Feron, R., Wolters-Arts, M., Edqvist, J., Gerats, T., Derksen, J. and Mariani, C. (2005) STIG1 controls exudate secretion in the pistil of petunia and tobacco. Plant Physiol. 138, 153–160.CrossRefPubMedGoogle Scholar
  57. Verwoert, I., Meller-Harel, Y., van der Linden, K., Verbree, B., Koes, R. and Stuitje, A. (2000) The molecular basis of the high linoleic acid content in Petunia seed oil: Analysis of a seed-specific linoleic acid mutant. Biochem. Soc. Trans. 28, 631–632.CrossRefPubMedGoogle Scholar
  58. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Pelemen, J. and Kuiper, M. (1995) AFLP: A new technique for fingerprinting. Nucl. Acids Res. 23, 4407–4414.CrossRefPubMedGoogle Scholar
  59. Wessler, S. (1988) Phenotypic diversity mediated by the maize transposable elements Acand Spm. Science 242, 399–405.CrossRefPubMedGoogle Scholar
  60. Wijsman, H.J.W. (1986) Evidence for transposition in Petunia. Theor. Appl. Genet. 71, 791–796.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Plant Genetics/IWWRRadboud Universiteit NijmegenNijmegenNederland

Personalised recommendations