Petunia pp 325-341 | Cite as

Genetic Recombination and Mapping in Petunia

  • Judith Strommer
  • Janny L. Peters
  • Tom Gerats


For nearly a century Petunia has served as a model species for genetic and cytological studies. The list of mapped loci has grown from one for each of the seven chromosomes to more than 150, to which can be added several hundred, mostly AFLP-based, molecular markers. Mapping efforts provided early evidence for a number of phenomena which now appear to apply to a great number of plant and animal species, including a tendency toward tightly clustered gene family members, suppression of recombination in wide crosses, frequent chromosomal rearrangements, and active transposable element systems.


Linkage Group Synaptonemal Complex Wide Cross Synaptonemal Complex Formation Linkage Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abirached-Darmency, M., Tarenghi, E. and de Jong, J.H. (1992) The effect on meiotic synapsis of a recombination modulator in Petunia hybrida. Genome 35, 443–453.Google Scholar
  2. Baird, W.V. and Meagher, R.B. (1987) A complex gene superfamily encodes actin in Petunia. EMBO J. 6, 3223–3231.PubMedGoogle Scholar
  3. Bentolila, S., Zethof, J., Gerats, T. and Hanson, M.R. (1998) Locating the petunia Rf gene on a 650-kb DNA fragment. Theor. Appl. Genet. 96, 980–989.CrossRefGoogle Scholar
  4. Bentolila, S., Alfonso, A.A. and Hanson, M.R. (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci., USA 99, 10877–10892.Google Scholar
  5. Bert, P.F., Charment, G., Sourdille, P., Hayward, M.D. and Balfourier, F. (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor. Appl. Genet. 99, 445–452.CrossRefGoogle Scholar
  6. Bianchi, F. (1959) Onderzoek naar de Erfelijkheid van de Bloemvorm bij Petunia.Academisch proefschrift, Amsterdam.Google Scholar
  7. Bianchi, F., Cornelissen, P.T.J., Gerats, A.G.M. and Hogervorst, J.M.W. (1978) Regulation of gene action in Petunia hybrida: Unstable alleles of a gene for flower colour. Theor. Appl. Genet. 53, 157–167.CrossRefGoogle Scholar
  8. Bonierbale, M., Plaisted, R.L. and Tanksley, S.D. (1988) RFLP maps of potato and tomato based on a common set of clones reveal modes of chromosomal evolution. Genet. 120, 1095–1103.Google Scholar
  9. Caldwell, K.S., Russell, J., Langride, P. and Powell, W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genet. 172, 557–567.CrossRefGoogle Scholar
  10. Chetelat, R.T., Meglic, V. and Cisneros, P. (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum x Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologus genomes. Genet. 154, 857–867.Google Scholar
  11. Cornu, A. (1984) Ch 5: Genetics. In: K.C. Sink, (Ed.), Petunia, Monographs on Theoretical and Applied Genetics 9. Springer-Verlag, Berlin, pp. 34–48.Google Scholar
  12. Cornu, A. and Maizonnier, D. (1983) The genetics of Petunia. In: J. Janick (Ed.), Plant Breeding Reviews, Vol 1. Avi Publishing Co, Westport, Connecticut, pp. 12–57.Google Scholar
  13. Cornu, A., Farcy, E. and Mousset, C. (1989) A genetic basis for variations in meiotic recombination in Petunia hybrida. Genome 32, 46–53.Google Scholar
  14. de Vlaming, P., Gerats, A.G.M., Wiering, H., Wijsman, H.J.W., Cornu, A., Farcy, E. and Maizonnier, D. (1984) Petunia hybrida: A short description of the action of 91 genes, their origin, and their map location. Plant Molec. Biol. Rep. 2, 21–42.CrossRefGoogle Scholar
  15. Fransz, P.F., Stam, M., Montijn, B., Ten Hoopen, R., Wiegant, J., Kooter, J.M., Oud, O. and Nanninga, N. (1996) Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. Plant J. 9, 767–774.CrossRefGoogle Scholar
  16. Galliot, C., Hoballah, M.E., Kuhlemeier, C. and Stuurman, J. (2006) Genetic control of flower size and nectar volume in Petunia pollination syndromes. Planta 225, 203–212.CrossRefPubMedGoogle Scholar
  17. Garabagi, F. and Strommer, J. (2004) Distinct genes produce the alcohol dehydrogenases of pollen and maternal tissues in Petunia hybrida. Biochem. Genet. 42, 199–208.CrossRefPubMedGoogle Scholar
  18. Garabagi, F. and Strommer, J. (2005) Selective recruitment of Adh genes for distinct enzymatic functions in Petunia hybrida. Plant Molec. Biol. 58, 283–294.CrossRefGoogle Scholar
  19. Gerats, A.G.M., Vlaming, P. de and Maizonnier, D. (1984) Recombination behavior and gene-transfer in Petunia hybrida after pollen irradiation. Mol. Gen. Genet. 198 (1), 57–61CrossRefGoogle Scholar
  20. Gerats, A.G.M., Veerman, W., de Flaming, I., Wiering, H., Cornu, A., Farcy, E. and Maizonnier, D. (1987) Lineage map of Petunia hybrida (2 N=14). In: S.J. O’Brien (Ed.), Genetic Maps Vol. 4. Cold Spring Harbor Laboratory Press, NY, pp. 746–751.Google Scholar
  21. Gerats, A.G.M., Souer, E., Kroon, J., McLean, M., Farcy, E. and Maizonnier, D. (1993) Petunia hybrida. In: S. O’Brien (Ed.), Genetic Maps: Locus Maps of Complex Genomes, 6th Edn. Cold Spring Harbor Laboratory Press, NY, pp. 6.13–6.23.Google Scholar
  22. Gerats, A., De Keukeleire, P., Deblaere, R., van Montagu, M. and Zethof, J. (1995) Amplified fragment length polymorphism (AFLP) mapping in Petunia: A fast and reliable method for obtaining a genetic map. Acta Hort. 420, 58–61.Google Scholar
  23. Kagawa, N., Nagaki, N. and Tsujimoto, H. (2002) Tetrad-FISH analysis reveals recombination suppression by interstitial heterochromatin sequences in rye (Secale cereale). Mol. Genet. Genom. 267, 10–15.CrossRefGoogle Scholar
  24. Koehler, K.E., Cherry, J.P., Lynn, A., Hunt, P.A. and Hassold, T.J. (2002) Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains. Genet. 162, 297–306.Google Scholar
  25. Koes, R.E., Spelt, C.E., Reif, H.J., van den Elzen, P.J.M., Veltkamp, E. and Mol, J.N.M. (1986) Floral tissue of Petunia hybrida (V30) expresses only one member of the chalcone synthase multigene family. Nucl. Acids Res. 14, 5229–5239.CrossRefPubMedGoogle Scholar
  26. Koes, R.E., Spelt, C.E., Mol, J.N.M. and Gerats, A.G.M. (1987) The chalcone synthase multigene family of Petunia hybrida (V30): Sequence homology, chromosomal localization and evolutionary aspets. Plant Mol. Biol. 10, 159–169.CrossRefGoogle Scholar
  27. Levan, A. (1938) Tetraploidy and octoploidy induced by colchicines in diploid Petunia. Hereditas 25, 109–131.CrossRefGoogle Scholar
  28. Maizonnier, D. (1971) Utilisation dea plantes haploids pour l'analyse du caryogramme de Petunia hybrida Hort. Ann. Amélior. Pl. 21, 257–264.Google Scholar
  29. Maizonnier, D. and Cornu, A. (1971) A telocentric translocation responsible for variegation in Petunia. Genetica 42, 422–436.CrossRefGoogle Scholar
  30. Maizonnier, D. (1976) Étude Cytogenetique de Variations Chromosomique Naturelles ou Induites chez Petunia hybrida Hort. Ph.D. Thesis, Université de Dijon, Dijon, France.Google Scholar
  31. Maizonnier, D. and Moessner, A. (1979) Localization of the linkage groups on the seven chromosomes of the Petunia hybrida genome. Genetica 51, 143–148.CrossRefGoogle Scholar
  32. Maizonnier, D., Cornu, A. and Farcy, E. (1984) Genetic and cytological maps in Petunia: A sketch for chromosome VI. Can. J. Genet. Cytol. 26, 657–663.Google Scholar
  33. Marthaler, H. (1936) Morphologie der chromosomen des zellkernes von Petunia. Zeitschr Indukt. Absgamm. u. Vererbungs. 72, 258–266.CrossRefGoogle Scholar
  34. McLean, M., Baird, W.V., Gerats, A.G.M. and Meagher, R.B. (1987) Determination of copy number and linkage relationships among five actin gene subfamilies in Petunia hybrida. Plant Mol. Biol. 5, 3223–3231.Google Scholar
  35. McLean, M., Gerats, A.G.M., Baird, W.V. and Meagher, R.B. (1990) Six actin gene subfamilies map to five chromosomes of Petunia hybrida. J. Hered. 81, 341–346.PubMedGoogle Scholar
  36. Miller, K.D., Strommer, J. and Taylor, L.P. (2002) Conservation in divergent solanaceous species of the unique gene structure and enzymatic activity of a gametophytically-expressed flavonol 3-O-galactosyltransferase. Plant Molec. Biol. 48, 223–242.CrossRefGoogle Scholar
  37. Mitchell, A.Z., Hanson, M.R., Skvirsky, R.C. and Ausubel, F.M. (1980) Anther culture of Petunia: Genotypes with high frequency of callus, root or plantlet formation. Z Pflanzenphysiol. Bd 100S, 131–146.Google Scholar
  38. Paris, C.D. and Haney, W.J. (1958) Genetic studies in Petunia: Nine genes for flower color. Proc. Amer. Soc. Hort. Sci. 72, 462–472.Google Scholar
  39. Peltier, D., Farcy, E., Dulieu, H. and Berville, A. (1994) Origin, distribution and mapping of RAPD markers from wild Petunia species in Petunia hybrida Hort lines. Theor. Appl. Genet. 88, 637–645.CrossRefGoogle Scholar
  40. Robbins, T.P., Gerats, A.G.M., Fiske, H. and Jorgensen, R.A. (1995) Suppression of recombination in wide hybrids of Petunia hybrida as revealed by genetic mapping of marker transgenes. Theor. Appl. Genet. 90, 957–968.CrossRefGoogle Scholar
  41. Roberts, P.A. (1965) Difference in the behavior of eu- and hetero-chromatin: Crossing over. Nature 205, 725–726.CrossRefPubMedGoogle Scholar
  42. Robert, N., Farcy, E. and Cornu, A. (1991) Genetic control of meiotic recombination in Petunia hybrida: Dosage effect of gene Rm1 on segments Hf1-Lg1 and An2-Rt; role of modifiers. Genome 34, 515–523.Google Scholar
  43. Sink, K.C. (1975) Inheritance of three genes for morphological characters in Petunia hybrida in crosses with four Petunia species. Can. J. Genet. Cytol. 17, 67–74.Google Scholar
  44. Smith, F.J. and Oud, J.L. (1973) A standard karyogram of Petunia hybrida. Hort. Genet. 44, 474–484.CrossRefGoogle Scholar
  45. Smith, F.J., de Jong, J.H. and Oud, J.L. (1975) The use of primary trisomics for the localization of genes on the seven different chromosomes of Petunia hybrida. 1.Triplo V. Genetica 45, 361–370.Google Scholar
  46. Steere, W.C. (1932) Chromosome behavior in triploid Petunia hybrids. Amer. J. Bot. 19, 340–357.CrossRefGoogle Scholar
  47. Strommer, J., Gerats, A.G.M., Sanago, M. and Molnar, S.J. (2000) A gene-based RFLP map of Petunia. Theor. Appl. Genet. 100, 899–905.CrossRefGoogle Scholar
  48. Strommer, J., Gerats, A.G.M., Sanago, M. and Molnar, S.J. (2001) Erratum: A gene-based RFLP map of Petunia. Theor. Appl. Genet. 102, 1305–1306.CrossRefGoogle Scholar
  49. Strommer, J., Peters, J., Zethof, J., De Keukeleire, P. and Gerats, T. (2002) AFLP maps of Petunia hybrida: Building maps when markers cluster. Theor, Appl. Genet. 105, 1000–1009.CrossRefGoogle Scholar
  50. Tanksley, S.D., Ganal, M.A., Prince, J.P., de Vicente, M.C., Bonierbale, M.W., Brown, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Roder, M.S., Wing, R.A., Wu, W. and Young, N.D. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141–1160.PubMedGoogle Scholar
  51. ten Hoopen, R., Robbins, T.P., Fransz, P.F., Montijn, G.M., Oud, O., Gerats, A.G.M. and Nanninga, N. (1996) Localization of T-DNA insertions in Petunia by fluorescence in situ hybridization: Physical evidence for suppression of recombination. Plant Cell 8, 823–830.CrossRefPubMedGoogle Scholar
  52. van den Berg, B.M. and Wijsman, H.J. (1980) Location of the structural genes of some enzymes in Petunia. Plant Mol. Biol. Newsl. 2, 50–52.Google Scholar
  53. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23, 4407–4414.CrossRefPubMedGoogle Scholar
  54. Wallroth, M., Gerats, A.G.M., Rogers, S.G., Fraley, R.T. and Horsch, R.B. (1986) Chromosomal location of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202, 6–15.CrossRefGoogle Scholar
  55. Wiering, H. and de Vlaming, P. (1973) Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. I. The gene Gf. Genen. Phaenen. 16, 35–50.Google Scholar
  56. Wiering, H. and de Vlaming, P. (1977) Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. II. The genes Mf1 and Mf2. Z. Pflanzenzuecht. 78, 113–212.Google Scholar
  57. Wiering, H., de Vlaming, P., Cornu, A. and Maizonnier, D. (1979) Petunia genetics. I. List of genes. Ann. Amélior. Plantes 29, 611–622.Google Scholar
  58. Yandeau-Nelson, M.D., Nikolau, B.J. and Schnable, P.S. (2006) Effects of trans-acting genetic modifiers on meiotic recombination across the a1-sh2 interval of maize. Genetics 174, 101–112.CrossRefPubMedGoogle Scholar
  59. Yang, D., Goldsmith, E.B., Lin, Y., Waldman, B.C., Kaza, V. and Waldman, A.S. (2006) Genetic exchange between homeologous sequences in mammalian chromosomes is averted by local homology requirements for initiation and resolution of recombination. Genetics 74, 135–144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant AgricultureBovey Building, University of GuelphGuelphCanada

Personalised recommendations