Petunia pp 247-267 | Cite as

The Role of Expansins A in Petunia Development

  • Sara Zenoni
  • Anita Zamboni
  • Andrea Porceddu
  • Mario Pezzotti


Expansins, a diverse set of proteins found in plants and some other organisms, appear to play a key regulatory role in cell expansion, thereby serving critical functions in plant morphogenesis, development, and adaptation to stress. We have isolated a number of expansin genes from Petunia. Their ongoing functional analysis provides evidence for their involvement in cell wall functions, including cellulose metabolism, disruption of noncovalent cellulose/glycan bonds, and separation of the cell wall matrix during cell expansion.


Cellulose Microfibril Expansin Gene Isolate Cell Wall Petal Development Cell Wall Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balestrini, R., Cosgrove, D.J. and Bonfante, P. (2005) Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220, 889–899.CrossRefPubMedGoogle Scholar
  2. Belfield, E.J., Ruperti, B., Roberts, J.A. and McQueen-Mason, S. (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J. Exp. Bot. 56, 817–823.CrossRefPubMedGoogle Scholar
  3. Brummel, D.A., Harpster, M.H. and Dunsmuir, P. (1999) Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 39, 161–169.CrossRefGoogle Scholar
  4. Chen, F. and Bradford, K.J. (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 124, 1265–1274.CrossRefPubMedGoogle Scholar
  5. Cho, H.T. and Cosgrove, D.J. (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci., USA 97, 9783–9788.CrossRefPubMedGoogle Scholar
  6. Cho, H.T. and Cosgrove, D.J. (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14, 3237–3253.CrossRefPubMedGoogle Scholar
  7. Choi, D., Lee, Y., Cho, H.T. and Kende, H. (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15, 1386–1398.CrossRefPubMedGoogle Scholar
  8. Choi, D., Cho, H.T. and Lee, Y. (2006) Expansins: Expanding importance in plant growth and development. Physiol. Plant. 126, 511–518.Google Scholar
  9. Civello, P.M., Powell, A.L., Sabehat, A. and Bennett, A.B. (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121, 1273–1279.CrossRefPubMedGoogle Scholar
  10. Colmer, T.D., Peeters, A.J., Wagemaker, C.A., Vriezen, W.H., Ammerlaan, A. and Voesenek, L.A. (2004) Expression of α-expansin genes during root acclimations to O2 deficiency in Rumex palustris. Plant Cell 56, 423–437.Google Scholar
  11. Cosgrove, D.J., Bedinger, P. and Durachko, D.M. (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci., USA 94, 6559–6564.CrossRefPubMedGoogle Scholar
  12. Cosgrove, D.J. (1999) Enzymes and other agents that enhance cell wall extensibility. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 391–417.CrossRefGoogle Scholar
  13. Cosgrove, D.J. (2000) Loosening of plant cell walls by expansin. Nature 407, 321–326.CrossRefPubMedGoogle Scholar
  14. Cosgrove, D.J., Li, L.C., Cho, H.-T., Hoffmann-Benning, S., Moore, R.C. and Blecker, D. (2002) The growing world of expansins. Plant Cell Physiol. 43, 1436–1444.CrossRefPubMedGoogle Scholar
  15. Cosgrove, D.J. (2005) Growth of the plant cell wall. Nature Reviews 6, 850–861.PubMedGoogle Scholar
  16. Darley, C.P., Forrester, A.M. and McQueen-Mason, S.J. (2001) The molecular basis of plant cell wall expansion. Plant Mol. Biol. 47, 179–195.CrossRefPubMedGoogle Scholar
  17. Fleming, A.J., McQueen-Mason, S., Mandel, T. and Kuhlemeier, C. (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415–1418.CrossRefGoogle Scholar
  18. Gerats, A.G., Huits, H., Vrijlandt, E., Marana, C., Souer, E. and Beld, M. (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of Petunia. Plant Cell 2, 1121–1128.CrossRefPubMedGoogle Scholar
  19. Giordano, W. and Hirsch, A.M. (2004) The expression of MaEXP1, a Melitotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium melitoti interaction. Mol. Plant Microbe Interact. 17, 613–622.CrossRefPubMedGoogle Scholar
  20. Gookin, T.E., Hunter, D.A. and Reid, M.S. (2003) Temporal analysis of alpha and beta-expansin expression during floral opening and senescence. Plant Sci. 164, 769–781.CrossRefGoogle Scholar
  21. Gutierrez, C. (2005) Coupling cell proliferation and development in plants. Nature Cell Biol. 7, 535–541.CrossRefPubMedGoogle Scholar
  22. Harmer, S.E., Orford, S.J. and Timmis, J.N. (2002) Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol. Genet. Genomics 268, 1–9.CrossRefPubMedGoogle Scholar
  23. Hiwasa, K., Rose, J.K., Nakano, R., Inaba, A. and Kubo, Y. (2003) Differential expression of seven α-expansin genes during growth and ripening of pear fruit. Physiol. Plant. 117, 564–572.CrossRefPubMedGoogle Scholar
  24. Im, K.H., Cosgrove, D.J. and Jones, A.M. (2000) Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 123, 463–470.CrossRefPubMedGoogle Scholar
  25. Jones, L. and McQueen-Mason, S. (2004) A role of expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett. 559, 61–65.CrossRefPubMedGoogle Scholar
  26. Kotilainen, M., Helariutta, Y., Mehto, M., Pöllänen, E., Albert, V.A., Elomaa, P. and Teeri, T.H. (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11, 1093–1104.CrossRefPubMedGoogle Scholar
  27. Kudla, U., Qin, L., Milac, A., Kielak, A., Massen, C., Overmars, H., Popeijus, H., Roze, E., Petrescu, A., Smant, G., Bakker, J. and Helder, J. (2005) Origin, disruption and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Lett. 579, 2451–2457CrossRefPubMedGoogle Scholar
  28. Lee, Y. and Kende, H. (2001) Expression of alpha-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol. 127, 645–654.CrossRefPubMedGoogle Scholar
  29. Lee, Y., Choi, D. and Kende, H. (2001) Expansins: Ever-expanding numbers and functions. Curr. Opin. Plant Biol. 4, 527–532.CrossRefPubMedGoogle Scholar
  30. Lee, Y. and Kende, H. (2002) Expression of alpha-expansin and expansin-like genes in deepwater rice. Plant Physiol. 130, 1396–1405.CrossRefPubMedGoogle Scholar
  31. Link, B.M. and Cosgrove, D.J. (1998) Acid-growth response and alpha-expansins in suspension cultures of Bright Yellow 2 tobacco. Plant Physiol. 118, 907–916.CrossRefPubMedGoogle Scholar
  32. Martin, C., Bhatt, K. and Baumann, K. (2001) Shaping in plant cells. Curr. Opin. Plant Biol. 4, 540–549.CrossRefPubMedGoogle Scholar
  33. McQueen-Mason, S., Durachko, D.M. and Cosgrove, D.J. (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4, 1425–1433.CrossRefPubMedGoogle Scholar
  34. McQueen-Mason, S.J. and Cosgrove, D.J. (1995) Expansin mode of action on cell walls: Analysis of wall hydrolysis, stress-relaxation, and binding. Plant Physiol. 107, 87–100.PubMedGoogle Scholar
  35. McQueen-Mason, S.J. and Cosgrove, D.J. (2000) Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci., USA 91, 6574–6578.CrossRefGoogle Scholar
  36. Meyerowitz, E.M. (1997) Genetic control of cell division pattern in developing plants. Cell 88, 299–308.CrossRefPubMedGoogle Scholar
  37. Pezzotti, M., Feron, R. and Mariani, C. (2002) Pollination modulates expression of the PPAL gene, a pistil-specific beta-expansin. Plant Mol. Biol. 49, 187–197.CrossRefPubMedGoogle Scholar
  38. Pien, S., Wyzykowska, J., McQueen-Mason, S., Smart, C. and Fleming, A. (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci., USA 9, 11812–11817.CrossRefGoogle Scholar
  39. Powell, A.L., Kalamaki, M.S., Kurien, P.A., Gurrieri, S. and Bennett, A.B. (2003) Simultaneous transgenic suppression of LePG and LeEXP1 influences fruit texture and juice viscosity in a fresh market tomato variety. J. Agric. Food Chem. 51, 7450–7455.CrossRefPubMedGoogle Scholar
  40. Reale, L., Porceddu, A., Lanfaloni, L., Moretti, C., Zenoni, S., Pezzotti, M., Romano, B. and Ferranti, F. (2002) Patterns of cell division and expansion in developing petals of Petunia hybrida. Sex. Plant Reprod. 15, 123–132.CrossRefGoogle Scholar
  41. Rose, J.K., Cosgrove, D.J., Albersheim, P., Darvill, A.G. and Bennett, A.B. (2000) Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. 123, 1583–1592.CrossRefPubMedGoogle Scholar
  42. Sampedro, J., Lee, Y., Carey, R.E., dePamphilis, C. and Cosgrove, D.J. (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J. 44, 409–419.CrossRefPubMedGoogle Scholar
  43. Smith, L.G. (2003) Cytoskeletal control of plant cell shape: Getting the fine points. Curr. Opin. Plant Biol. 6, 63–73.CrossRefPubMedGoogle Scholar
  44. Trivedi, P.K. and Nath, P. (2004) MaExp1, an ethylene-induced expansin from ripening banana fruit. Plant Sci. 167, 1351–1358.CrossRefGoogle Scholar
  45. Twyman, R.M. (2003) Growth and development: Molecular biology of development. In: B. Thomas, D.J.Murphy and B. Murray (Eds.), Encyclopedia of Applied Plant Sciences. Elsevier Science, London, pp. 539–549.Google Scholar
  46. Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornelli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.S. and Gerats, T. (2003) Toward the analysis of the Petunia MADS box gene family by reverse and forward tranposon insertion mutagenesis approaches: B, C, and D floral organ identity function require SEPALLATA-like MADS box genes in Petunia. Plant Cell 15, 2680–2693.CrossRefPubMedGoogle Scholar
  47. Wang, W., Scali, M., Vignali, R., Milanesi, C., Petersen, A., Sari-Gorla, M. and Cresi, M. (2004) Male-sterile mutation alters Zea m 1 (beta-expansin 1) accumulation in a maize mutant. Sex. Plant Reprod. 17, 41–47.CrossRefGoogle Scholar
  48. Wu, Y., Thorne, E.T., Sharp, R.E. and Cosgrove, D.J. (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol. 14, 3237–3253.Google Scholar
  49. Xu, B., Janson, J.C. and Sellos, D. (2001) Cloning and sequencing of molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur. J. Biochem. 268, 3718–3727.CrossRefPubMedGoogle Scholar
  50. Yennawar, N.H., Li, L.C., Dudzinski, D.M., Tabuchi, A. and Cosgrove, D.J. (2006) Crystal structure and activities of EXPB1 (Zea m1), a beta-expansin and group-1 allergen from maize. Proc. Natl. Acad. Sci., USA 103, 14664–14671.CrossRefPubMedGoogle Scholar
  51. Yuan, S., Wu, Y. and Cosgrove, D.J. (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol. 127, 324–333.CrossRefPubMedGoogle Scholar
  52. Zenoni, S., Reale, L., Tornielli, G.B., Lanfaloni, L., Porceddu, A., Ferrarini, A., Moretti, C., Zamboni, A., Speghini, A., Ferranti, F. and Pezzotti, M. (2004) Downregulation of the Petunia hybrida α-expansin gene PhEXP1reduces the amount of crystalline cellulose in cell wall and leads to phenotypic changes in petal limbs. Plant Cell 16, 295–308.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sara Zenoni
    • 1
  • Anita Zamboni
  • Andrea Porceddu
  • Mario Pezzotti
  1. 1.Dipartimento Scienze, Tecnologie e Mercati della Vite e del VinoUniversità di Verona37028 San Floriano (Verona)Italia

Personalised recommendations