Virulence of West Nile Virus in Different Animal Hosts

  • David W. C. Beasley
  • Alan D. T. Barrett
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

1 Introduction

West Nile virus (WNV) is one of the most widely distributed of all arboviruses, with an extensive distribution throughout Africa, the Middle East, parts of Europe and the former Soviet Union, South Asia, and Australia. Until the mid-1990s, human infections with WNV were mostly associated with a mild undifferentiated fever. However, outbreaks in Europe, Israel, and North America involving humans and animals have been associated with significant rates of neurological disease (see Hayes and Gubler, 2006for a review). The most important event was the introduction of WNV into the Western Hemisphere in the summer of 1999 when the virus was first isolated in New York City before spreading along the eastern seaboard of the US. The initial outbreak in 1999 involved meningitis and encephalitis with 62 human cases, including seven fatalities (a case: fatality rate of 12%); 25 clinical cases in equines, including nine deaths (a case: fatality rate of 36%); and an accompanying...


West Nile Virus Gray Squirrel West Nile Virus Infection American Crow West Nile Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arjona, A., Foellmer, H.G., Town, T., Leng, L., McDonald, C., Wang, T., Wong, S.J., Montgomery, R.R., Fikrig, E., and Bucala, R. (2007). Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117,3059–3066.CrossRefPubMedGoogle Scholar
  2. Bakonyi, T., Hubalek, Z., Rudolf, I., and Nowotny, N. (2005). Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis 11,225–231.PubMedGoogle Scholar
  3. Beasley, D.W.C., Davis, C.T., Estrada-Franco, J., Navarro-Lopez, R., Campomanes-Cortes, A., Tesh, R.B., Weaver, S.C., and Barrett, A.D.T. (2004a). Genome sequence and attenuating mutations in West Nile virus isolate from Mexico. Emerg Infect Dis 10,2221–2224.Google Scholar
  4. Beasley, D.W.C., Li, L., Suderman, M.T., and Barrett, A.D.T. (2001). West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations. Ann N Y Acad Sci 951,332–335.CrossRefPubMedGoogle Scholar
  5. Beasley, D.W.C., Li, L., Suderman, M.T., and Barrett, A.D.T. (2002). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296,17–23.CrossRefPubMedGoogle Scholar
  6. Beasley, D.W.C., Whiteman, M.C., Zhang, S., Huang, C.Y., Schneider, B.S., Smith, D.R., Gromowski , G.D. , Higgs , S. , Kinney , R.M. , and Barrett , A.D.T. (2005). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79,8339–8347.CrossRefPubMedGoogle Scholar
  7. Berthet, F.X., Zeller, H.G., Drouet, M.T., Rauzier, J., Digoutte, J.P., and Deubel, V. (1997). Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78 (Pt 9), 2293–2297.PubMedGoogle Scholar
  8. Besselaar, T.G., and Blackburn, N.K. (1988). Antigenic analysis of West Nile virus strains using monoclonal antibodies. Arch Virol 99,75–88.CrossRefPubMedGoogle Scholar
  9. Billoir, F., de Chesse, R., Tolou, H., de Micco, P., Gould, E.A., and de Lamballerie, X. (2000). Phylogeny of the genus flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J Gen Virol 81(Pt 9), 2339.PubMedGoogle Scholar
  10. Bondre, V.P., Jadi, R.S., Mishra, A.C., Yergolkar, P.N., and Arankalle, V.A. (2007). West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88,875–884.CrossRefPubMedGoogle Scholar
  11. Brault, A.C., Huang, C.Y., Langevin, S.A., Kinney, R.M., Bowen, R.A., Ramey, W. N. , Panella, N.A., Holmes, E.C., Powers, A.M., and Miller, B.R. (2007). A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39,1162–1166.CrossRefPubMedGoogle Scholar
  12. Brault, A.C., Langevin, S.A., Bowen, R.A., Panella, N.A., Biggerstaff, B.J., Miller, B.R., and Komar, N. (2004). Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10,2161–2168.PubMedGoogle Scholar
  13. Briese, T., Rambaut, A., Pathmajeyan, M., Bishara, J., Weinberger, M., Pitlik, S., and Lipkin, W.I. (2002). Phylogenetic analysis of a human isolate from the 2000 Israel West Nile virus epidemic. Emerg Infect Dis 8, 528–531.PubMedGoogle Scholar
  14. Brown, A.N., Kent, K.A., Bennett, C.J., and Bernard, K.A. (2007). Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 368,422–430.CrossRefPubMedGoogle Scholar
  15. Bunning, M.L., Bowen, R.A., Cropp, C.B., Sullivan, K.G., Davis, B.S., Komar, N., Godsey, M.S., Baker, D., Hettler, D.L., Holmes, D.A., et al. (2002). Experimental infection of horses with West Nile virus. Emerg Infect Dis 8,380–386.PubMedGoogle Scholar
  16. Burt, F.J., Grobbelaar, A.A., Leman, P.A., Anthony, F.S., Gibson, G.V., and Swanepoel, R. (2002). Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis 8,820–826.PubMedGoogle Scholar
  17. Chambers, T.J., Halevy, M., Nestorowicz, A., Rice, C.M., and Lustig, S. (1998). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinva-siveness. J Gen Virol 79(Pt 10), 2375–2380.PubMedGoogle Scholar
  18. Charrel, R.N., Brault, A.C., Gallian, P., Lemasson, J.J., Murgue, B., Murri, S., Pastorino, B., Zeller, H., de Chesse, R., de Micco, P., et al. (2003). Evolutionary relationship between Old World West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe. Virology 315,381–388.CrossRefPubMedGoogle Scholar
  19. Clark, L., Hall, J., McLean, R., Dunbar, M., Klenk, K., Bowen, R., and Smeraski, C.A. (2006). Susceptibility of greater sage-grouse to experimental infection with West Nile virus. J Wildl Dis 42,14–22.PubMedGoogle Scholar
  20. Davis, C.T., Beasley, D.W.C., Guzman, H., Siirin, M., Parsons, R.E., Tesh, R.B., and Barrett, A.D.T. (2004). Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330,342–350.CrossRefPubMedGoogle Scholar
  21. Davis, C.T., Galbraith, S.E., Zhang, S., Whiteman, M.C., Li, L., Kinney, R.M., and Barrett, A.D.T. (2007). A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3 untranslated region alters virus phenotype. J Virol 81,6111–6116.CrossRefPubMedGoogle Scholar
  22. Davis, C.W., Mattei, L.M., Nguyen, H.Y., Ansarah-Sobrinho, C., Doms, R.W., and Pierson, T.C. (2006a). The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281,37183–37194.CrossRefGoogle Scholar
  23. Davis, C.W., Nguyen, H.Y., Hanna, S.L., Sanchez, M.D., Doms, R.W., and Pierson, T.C. (2006b). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80,1290–1301.CrossRefGoogle Scholar
  24. Diamond, M.S., Shrestha, B., Mehlhop, E., Sitati, E., and Engle, M. (2003a). Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16,259–278.CrossRefGoogle Scholar
  25. Diamond, M.S., Sitati, E.M., Friend, L.D., Higgs, S., Shrestha, B., and Engle, M. (2003b). A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med 198,1853–1862.CrossRefGoogle Scholar
  26. Ding, X., Wu, X., Duan, T., Siirin, M., Guzman, H., Yang, Z., Tesh, R.B., and Xiao, S.Y. (2005). Nucleotide and amino acid changes in West Nile virus strains exhibiting renal tropism in hamsters. Am J Trop Med Hyg 73,803–807.PubMedGoogle Scholar
  27. Estrada-Franco, J.G., Navarro-Lopez, R., Beasley, D.W.C., Coffey, L., Carrara, A.S., Travassos da Rosa, A., Clements, T., Wang, E., Ludwig, G.V., Cortes, A.C. et al., (2003). West Nile virus in Mexico: evidence of widespread circulation since July 2002. Emerg Infect Dis 9,1604–1607.PubMedGoogle Scholar
  28. Evans, J.D., and Seeger, C. (2007). Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol81,11809–11816.CrossRefPubMedGoogle Scholar
  29. Garcia-Tapia, D., Hassett, D.E., Mitchell, W.J., Jr., Johnson, G.C., and Kleiboeker, S.B. (2007). West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13,130–138.CrossRefPubMedGoogle Scholar
  30. Gaunt, M.W., Sall, A.A., de Lamballerie, X., Falconar, A.K., Dzhivanian, T.I., and Gould, E.A. (2001). Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82,1867–1876.PubMedGoogle Scholar
  31. Georges, A.J., Lesbordes, J.L., Georges-Courbot, M.C., Meunier, D.M.Y., and Gonzalez , J. P. (1988). Fatal hepatitis from West Nile virus. Ann Inst Pasteur Virol 138,237–244.CrossRefGoogle Scholar
  32. Goverdhan, M.K., Kulkarni, A.B., Gupta, A.K., Tupe, C.D., and Rodrigues, J.J. (1992). Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques. Acta Virol 36,277–283.PubMedGoogle Scholar
  33. Hanna, S.L., Pierson, T.C., Sanchez, M.D., Ahmed, A.A., Murtadha, M.M., and Doms, R.W. (2005). N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79,13262–13274.CrossRefPubMedGoogle Scholar
  34. Hayes, E.B., and Gubler, D.J. (2006). West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 57,181–194.CrossRefPubMedGoogle Scholar
  35. Higgs, S., Schneider, B.S., Vanlandingham, D.L., Klingler, K.A., and Gould, E.A. (2005). Nonviremic transmission of West Nile virus. Proc Natl Acad Sci USA 102,8871–8874.CrossRefPubMedGoogle Scholar
  36. Hukkanen, R.R., Liggitt, H.D., Kelley, S.T., Grant, R., Anderson, D.M., Hall, R.A., Tesh, R.B., Travassos DaRosa, A.P., and Bielefeldt-Ohmann, H. (2006). West Nile and St. Louis encephalitis virus antibody seroconversion, prevalence, and persistence in naturally infected pig-tailed macaques (Macaca nemestrina). Clin Vaccine Immunol 13,711–714.CrossRefPubMedGoogle Scholar
  37. Jia, X.Y., Briese, T., Jordan, I., Rambaut, A., Chi, H.C., Mackenzie, J.S., Hall, R.A., Scherret, J., and Lipkin, W.I. (1999). Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet 354,1971–1972.CrossRefPubMedGoogle Scholar
  38. Jia, Y., Moudy, R.M., Dupuis, A.P., III, Ngo, K.A., Maffei, J.G., Jerzak, G.V., Franke, M.A., Kauffman, E.B., and Kramer, L.D. (2007). Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367,339–347.CrossRefPubMedGoogle Scholar
  39. Kinney, R.M., Huang, C.Y., Whiteman, M.C., Bowen, R.A., Langevin, S.A., Miller, B.R., and Brault, A.C. (2006). Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol 87,3611–3622.CrossRefPubMedGoogle Scholar
  40. Kipp, A.M., Lehman, J.A., Bowen, R.A., Fox, P.E., Stephens, M.R., Klenk, K., Komar, N., and Bunning, M.L. (2006). West Nile virus quantification in feces of experimentally infected American and fish crows. Am J Trop Med Hyg 75,688–690.PubMedGoogle Scholar
  41. Klee, A.L., Maidin, B., Edwin, B., Poshni, I., Mostashari, F., Fine, A., Layton, M., and Nash, D. (2004). Long-term prognosis for clinical West Nile virus infection. Emerg Infect Dis 10,1405–1411.PubMedGoogle Scholar
  42. Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bowen, R., and Bunning, M. (2003). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9,311–322.PubMedGoogle Scholar
  43. Kramer, L.D., and Bernard, K.A. (2001). West Nile virus infection in birds and mammals. Ann NY Acad Sci 951,84–93.CrossRefPubMedGoogle Scholar
  44. LaDeau, S.L., Kilpatrick, A.M., and Marra, P.P. (2007). West Nile virus emergence and large-scale declines of North American bird populations. Nature 447,710–713.CrossRefPubMedGoogle Scholar
  45. Lanciotti, R.S., Ebel, G.D., Deubel, V., Kerst, A.J., Murri, S., Meyer, R., Bowen, M., McKinney, N., Morrill, W.E., Crabtree, al., (2002). Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298,96–105.CrossRefPubMedGoogle Scholar
  46. Lanciotti, R.S., Roehrig, J.T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K.E., Crabtree, M.B., Scherret, al., (1999). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337.CrossRefPubMedGoogle Scholar
  47. Langevin, S.A., Brault, A.C., Panella, N.A., Bowen, R.A., and Komar, N. (2005). Variation in virulence of West Nile virus strains for house sparrows (Passer domesticus). Am J Trop Med Hyg 72,99–102.PubMedGoogle Scholar
  48. Li, L., Barrett, A.D.T., and Beasley, D.W.C. (2005). Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology 335,99–105.CrossRefPubMedGoogle Scholar
  49. Liu, W.J., Wang, X.J., Clark, D.C., Lobigs, M., Hall, R.A., and Khromykh, A.A. (2006). A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates Kinney, R., virus virulence in mice. J Virol 80,2396–2404.CrossRefPubMedGoogle Scholar
  50. Lvov, D.K., Butenko, A.M., Gromashevsky, V.L., Kovtunov, A.I., Prilipov, A.G., Aristova, V.A., Dzharkenov, A.F., Samokhvalov, E.I., Savage, H.M. , et al. (2004). West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch Virol Suppl 85–96.Google Scholar
  51. Martina, B.E., Koraka, P., van den Doel, P., van Amerongen, G., Rimmelzwaan, G.F., and Osterhaus, A.D. (2008). Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine 26,153–157.CrossRefPubMedGoogle Scholar
  52. Mathiot, C.C., Georges, A.J., and Deubel, V. (1990). Comparative analysis of West Nile virus strains isolated from human and animal hosts using monoclonal antibodies and cDNA restriction digest profiles. Res Virol 141,533–543.CrossRefPubMedGoogle Scholar
  53. Morrey, J.D., Day, C.W., Julander, J.G., Blatt, L.M., Smee, D.F., and Sidwell, R.W. (2004a). Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem Chemother 15,101–109.Google Scholar
  54. Morrey, J.D., Day, C.W., Julander, J.G., Olsen, A.L., Sidwell, R.W., Cheney, C.D., and Blatt, L.M. (2004b). Modeling hamsters for evaluating West Nile virus therapies. Antiviral Res 63,41–50.CrossRefGoogle Scholar
  55. Nemeth, N., Gould, D., Bowen, R., and Komar, N. (2006). Natural and experimental West Nile virus infection in five raptor species. J Wildl Dis 42,1–13.PubMedGoogle Scholar
  56. Paddock, C.D., Nicholson, W.L., Bhatnagar, J., Goldsmith, C.S., Greer, P.W., Hayes, E.B., Risko, J.A., Henderson, C., Blackmore, C.G., Lanciotti, R.S., et-al. (2006). Fatal hemor-rhagic fever caused by West Nile virus in the United States. Clin Infect Dis 42,1527–1535.CrossRefPubMedGoogle Scholar
  57. Padgett, K.A., Reisen, W.K., Kahl-Purcell, N., Fang, Y., Cahoon-Young, B., Carney, R., Anderson, N., Zucca, L., Woods, L., Husted, S., et al. (2007). West Nile virus infection in tree squirrels (Rodentia: Sciuridae) in California, 2004–2005. Am J Trop Med Hyg 76,810–813.PubMedGoogle Scholar
  58. Platt, K.B., Tucker, B.J., Halbur, P.G., Tiawsirisup, S., Blitvich, B.J., Fabiosa, F.G., Bartholomay, L.C., and Rowley, W.A. (2007). West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes. Emerg Infect Dis 13,831–837.PubMedGoogle Scholar
  59. Puig-Basagoiti, F., Tilgner, M., Bennett, C.J., Zhou, Y., Munoz-Jordan, J.L., Garcia-Sastre, A., Bernard, K.A., and Shi, P.Y. (2007). A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology 361,229–241.CrossRefPubMedGoogle Scholar
  60. Rappole, J.H., and Hubalek, Z. (2003). Migratory birds and West Nile virus. J Appl Microbiol 94(Suppl), 47S–58S.CrossRefPubMedGoogle Scholar
  61. Ratterree, M.S., da Rosa, A.P., Bohm, R.P. , CogswellJr., F.B., Phillippi, K.M., Caillouet, K., Schwanberger, S., Shope, R.E., and Tesh, R.B. (2003). West Nile virus infection in nonhu-man primate breeding colony, concurrent with human epidemic, southern Louisiana. Emerg Infect Dis 9,1388–1394.PubMedGoogle Scholar
  62. Ratterree, M.S., Gutierrez, R.A., Travassos da Rosa, A.P., Dille, B.J., Beasley, D.W.C., Bohm, R.P., Desai, S.M., Didier, P.J., Bikenmeyer, L.G., Dawson, G.J., et al. (2004). Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J Infect Dis 189,669–676.CrossRefPubMedGoogle Scholar
  63. Razumov, I.A., Kazachinskaia, E.I., Ternovoi, V.A., Protopopova, E.V., Galkina, I.V., Gromashevskii, V.L., Prilipov, A.G., Kachko, A.V., Ivanova, A.V., L'Vov, D.K., et al. (2005). Neutralizing monoclonal antibodies against Russian strain of the West Nile virus. Viral Immunol 18,558–568.CrossRefPubMedGoogle Scholar
  64. Salazar, P., Traub-Dargatz, J.L., Morley, P.S., Wilmot, D.D., Steffen, D.J., Cunningham, W.E., and Salman , M.D. (2004). Outcome of equids with clinical signs of West Nile virus infection and factors associated with death. J Am Vet Med Assoc 225,267–274.CrossRefPubMedGoogle Scholar
  65. Samuel, M.A., and Diamond, M.S. (2006). Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80,9349–9360.CrossRefPubMedGoogle Scholar
  66. Scherret, J.H., Mackenzie, J.S., Khromykh, A.A., and Hall, R.A. (2001a). Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951,361–363.CrossRefGoogle Scholar
  67. Scherret, J.H., Poidinger, M., Mackenzie, J.S., Broom, A.K., Deubel, V., Lipkin, W.I., Briese, T., Gould, E.A., and Hall, R.A. (2001b). The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7,697–705.CrossRefGoogle Scholar
  68. Sejvar, J.J. (2007). The long-term outcomes of human West Nile virus infection. Clin Infect Dis 44,1617–1624.CrossRefPubMedGoogle Scholar
  69. Shirato, K., Kimura, T., Mizutani, T., Kariwa, H., and Takashima, I. (2004a). Different chem-okine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol 74,507–513.CrossRefGoogle Scholar
  70. Shirato, K., Miyoshi, H., Goto, A., Ako, Y., Ueki, T., Kariwa, H., and Takashima, I. (2004b). Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85,3637–3645.CrossRefGoogle Scholar
  71. Shirato, K., Miyoshi, H., Kariwa, H., and Takashima, I. (2006). The kinetics of proinflammatory cytokines in murine peritoneal macrophages infected with envelope protein-glycosylated or non-glycosylated West Nile virus. Virus Res 121,11–16.CrossRefPubMedGoogle Scholar
  72. Shrestha, B., and Diamond, M.S. (2004). Role of CD8± T cells in control of West Nile virus infection. J Virol 78,8312–8321.CrossRefPubMedGoogle Scholar
  73. Shrestha, B., Gottlieb, D., and Diamond, M.S. (2003). Infection and injury of neurons by West Nile encephalitis virus. J Virol 77,13203–13213.CrossRefPubMedGoogle Scholar
  74. Venter, M., Myers, T.G., Wilson, M.A., Kindt, T.J., Paweska, J.T., Burt, F.J., Leman, P.A., and Swanepoel, R. (2005). Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 342,119–140.CrossRefPubMedGoogle Scholar
  75. Wang, T., Scully, E., Yin, Z., Kim, J.H., Wang, S., Yan, J., Mamula, M., Anderson, J.F., Craft, J., and Fikrig, E. (2003). IFN-gamma-producing gamma delta T cells help control murine West Nile virus infection. J Immunol 171,2524–2531.PubMedGoogle Scholar
  76. Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., and Flavell, R.A. (2004). Tolllike receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10,1366–1373.CrossRefPubMedGoogle Scholar
  77. Watson, J.T., Pertel, P.E., Jones, R.C., Siston, A.M., Paul, W.S., Austin, C.C., and Gerber, S.I. (2004). Clinical characteristics and functional outcomes of West Nile Fever. Ann Intern Med 141,360–365.PubMedGoogle Scholar
  78. Weaver, S.C., and Barrett, A.D.T. (2004). Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2, 789–801.CrossRefPubMedGoogle Scholar
  79. Weingartl, H.M., Neufeld, J.L., Copps, J., and Marszal, P. (2004). Experimental West Nile virus infection in blue jays (Cyanocitta cristata) and crows (Corvus brachyrhynchos). Vet Pathol 41,362–370.CrossRefPubMedGoogle Scholar
  80. Wicker, J.A., Whiteman, M.C., Beasley, D.W.C., Davis, C.T., Zhang, S., Schneider, B.S., Higgs, S., Kinney, R.M., and Barrett, A.D.T. (2006). A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349,245–253.CrossRefPubMedGoogle Scholar
  81. Wunschmann, A., Shivers, J., Carroll, L., and Bender, J. (2004). Pathological and immunohis-tochemical findings in American crows (Corvus brachyrhynchos) naturally infected with West Nile virus. J Vet Diagn Invest 16,329–333.PubMedGoogle Scholar
  82. Xiao, S.Y., Guzman, H., Zhang, H., Travassos da Rosa, A.P., and Tesh, R.B. (2001). West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7,714–721.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David W. C. Beasley
    • 1
  • Alan D. T. Barrett
    • 1
  1. 1.Institute for Human Infections and Immunity Sealy Center for Vaccine DevelopmentCenter for Biodefense and Emerging Infectious Diseases, and University of Texas Medical BranchGalvestonUSA

Personalised recommendations