Skip to main content

Virulence of West Nile Virus in Different Animal Hosts

  • Chapter

Part of the book series: Emerging Infectious Diseases of the 21 Century ((EIDC))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arjona, A., Foellmer, H.G., Town, T., Leng, L., McDonald, C., Wang, T., Wong, S.J., Montgomery, R.R., Fikrig, E., and Bucala, R. (2007). Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117,3059–3066.

    Article  PubMed  CAS  Google Scholar 

  • Bakonyi, T., Hubalek, Z., Rudolf, I., and Nowotny, N. (2005). Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis 11,225–231.

    PubMed  CAS  Google Scholar 

  • Beasley, D.W.C., Davis, C.T., Estrada-Franco, J., Navarro-Lopez, R., Campomanes-Cortes, A., Tesh, R.B., Weaver, S.C., and Barrett, A.D.T. (2004a). Genome sequence and attenuating mutations in West Nile virus isolate from Mexico. Emerg Infect Dis 10,2221–2224.

    CAS  Google Scholar 

  • Beasley, D.W.C., Li, L., Suderman, M.T., and Barrett, A.D.T. (2001). West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations. Ann N Y Acad Sci 951,332–335.

    Article  PubMed  CAS  Google Scholar 

  • Beasley, D.W.C., Li, L., Suderman, M.T., and Barrett, A.D.T. (2002). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296,17–23.

    Article  PubMed  CAS  Google Scholar 

  • Beasley, D.W.C., Whiteman, M.C., Zhang, S., Huang, C.Y., Schneider, B.S., Smith, D.R., Gromowski , G.D. , Higgs , S. , Kinney , R.M. , and Barrett , A.D.T. (2005). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79,8339–8347.

    Article  PubMed  CAS  Google Scholar 

  • Berthet, F.X., Zeller, H.G., Drouet, M.T., Rauzier, J., Digoutte, J.P., and Deubel, V. (1997). Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78 (Pt 9), 2293–2297.

    PubMed  CAS  Google Scholar 

  • Besselaar, T.G., and Blackburn, N.K. (1988). Antigenic analysis of West Nile virus strains using monoclonal antibodies. Arch Virol 99,75–88.

    Article  PubMed  CAS  Google Scholar 

  • Billoir, F., de Chesse, R., Tolou, H., de Micco, P., Gould, E.A., and de Lamballerie, X. (2000). Phylogeny of the genus flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J Gen Virol 81(Pt 9), 2339.

    PubMed  CAS  Google Scholar 

  • Bondre, V.P., Jadi, R.S., Mishra, A.C., Yergolkar, P.N., and Arankalle, V.A. (2007). West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88,875–884.

    Article  PubMed  CAS  Google Scholar 

  • Brault, A.C., Huang, C.Y., Langevin, S.A., Kinney, R.M., Bowen, R.A., Ramey, W. N. , Panella, N.A., Holmes, E.C., Powers, A.M., and Miller, B.R. (2007). A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39,1162–1166.

    Article  PubMed  CAS  Google Scholar 

  • Brault, A.C., Langevin, S.A., Bowen, R.A., Panella, N.A., Biggerstaff, B.J., Miller, B.R., and Komar, N. (2004). Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10,2161–2168.

    PubMed  Google Scholar 

  • Briese, T., Rambaut, A., Pathmajeyan, M., Bishara, J., Weinberger, M., Pitlik, S., and Lipkin, W.I. (2002). Phylogenetic analysis of a human isolate from the 2000 Israel West Nile virus epidemic. Emerg Infect Dis 8, 528–531.

    PubMed  Google Scholar 

  • Brown, A.N., Kent, K.A., Bennett, C.J., and Bernard, K.A. (2007). Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 368,422–430.

    Article  PubMed  CAS  Google Scholar 

  • Bunning, M.L., Bowen, R.A., Cropp, C.B., Sullivan, K.G., Davis, B.S., Komar, N., Godsey, M.S., Baker, D., Hettler, D.L., Holmes, D.A., et al. (2002). Experimental infection of horses with West Nile virus. Emerg Infect Dis 8,380–386.

    PubMed  Google Scholar 

  • Burt, F.J., Grobbelaar, A.A., Leman, P.A., Anthony, F.S., Gibson, G.V., and Swanepoel, R. (2002). Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis 8,820–826.

    PubMed  Google Scholar 

  • Chambers, T.J., Halevy, M., Nestorowicz, A., Rice, C.M., and Lustig, S. (1998). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinva-siveness. J Gen Virol 79(Pt 10), 2375–2380.

    PubMed  CAS  Google Scholar 

  • Charrel, R.N., Brault, A.C., Gallian, P., Lemasson, J.J., Murgue, B., Murri, S., Pastorino, B., Zeller, H., de Chesse, R., de Micco, P., et al. (2003). Evolutionary relationship between Old World West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe. Virology 315,381–388.

    Article  PubMed  CAS  Google Scholar 

  • Clark, L., Hall, J., McLean, R., Dunbar, M., Klenk, K., Bowen, R., and Smeraski, C.A. (2006). Susceptibility of greater sage-grouse to experimental infection with West Nile virus. J Wildl Dis 42,14–22.

    PubMed  Google Scholar 

  • Davis, C.T., Beasley, D.W.C., Guzman, H., Siirin, M., Parsons, R.E., Tesh, R.B., and Barrett, A.D.T. (2004). Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330,342–350.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C.T., Galbraith, S.E., Zhang, S., Whiteman, M.C., Li, L., Kinney, R.M., and Barrett, A.D.T. (2007). A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3 untranslated region alters virus phenotype. J Virol 81,6111–6116.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C.W., Mattei, L.M., Nguyen, H.Y., Ansarah-Sobrinho, C., Doms, R.W., and Pierson, T.C. (2006a). The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281,37183–37194.

    Article  Google Scholar 

  • Davis, C.W., Nguyen, H.Y., Hanna, S.L., Sanchez, M.D., Doms, R.W., and Pierson, T.C. (2006b). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80,1290–1301.

    Article  CAS  Google Scholar 

  • Diamond, M.S., Shrestha, B., Mehlhop, E., Sitati, E., and Engle, M. (2003a). Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16,259–278.

    Article  CAS  Google Scholar 

  • Diamond, M.S., Sitati, E.M., Friend, L.D., Higgs, S., Shrestha, B., and Engle, M. (2003b). A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med 198,1853–1862.

    Article  CAS  Google Scholar 

  • Ding, X., Wu, X., Duan, T., Siirin, M., Guzman, H., Yang, Z., Tesh, R.B., and Xiao, S.Y. (2005). Nucleotide and amino acid changes in West Nile virus strains exhibiting renal tropism in hamsters. Am J Trop Med Hyg 73,803–807.

    PubMed  CAS  Google Scholar 

  • Estrada-Franco, J.G., Navarro-Lopez, R., Beasley, D.W.C., Coffey, L., Carrara, A.S., Travassos da Rosa, A., Clements, T., Wang, E., Ludwig, G.V., Cortes, A.C. et al., (2003). West Nile virus in Mexico: evidence of widespread circulation since July 2002. Emerg Infect Dis 9,1604–1607.

    PubMed  Google Scholar 

  • Evans, J.D., and Seeger, C. (2007). Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol81,11809–11816.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Tapia, D., Hassett, D.E., Mitchell, W.J., Jr., Johnson, G.C., and Kleiboeker, S.B. (2007). West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13,130–138.

    Article  PubMed  CAS  Google Scholar 

  • Gaunt, M.W., Sall, A.A., de Lamballerie, X., Falconar, A.K., Dzhivanian, T.I., and Gould, E.A. (2001). Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82,1867–1876.

    PubMed  CAS  Google Scholar 

  • Georges, A.J., Lesbordes, J.L., Georges-Courbot, M.C., Meunier, D.M.Y., and Gonzalez , J. P. (1988). Fatal hepatitis from West Nile virus. Ann Inst Pasteur Virol 138,237–244.

    Article  Google Scholar 

  • Goverdhan, M.K., Kulkarni, A.B., Gupta, A.K., Tupe, C.D., and Rodrigues, J.J. (1992). Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques. Acta Virol 36,277–283.

    PubMed  CAS  Google Scholar 

  • Hanna, S.L., Pierson, T.C., Sanchez, M.D., Ahmed, A.A., Murtadha, M.M., and Doms, R.W. (2005). N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79,13262–13274.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, E.B., and Gubler, D.J. (2006). West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 57,181–194.

    Article  PubMed  CAS  Google Scholar 

  • Higgs, S., Schneider, B.S., Vanlandingham, D.L., Klingler, K.A., and Gould, E.A. (2005). Nonviremic transmission of West Nile virus. Proc Natl Acad Sci USA 102,8871–8874.

    Article  PubMed  CAS  Google Scholar 

  • Hukkanen, R.R., Liggitt, H.D., Kelley, S.T., Grant, R., Anderson, D.M., Hall, R.A., Tesh, R.B., Travassos DaRosa, A.P., and Bielefeldt-Ohmann, H. (2006). West Nile and St. Louis encephalitis virus antibody seroconversion, prevalence, and persistence in naturally infected pig-tailed macaques (Macaca nemestrina). Clin Vaccine Immunol 13,711–714.

    Article  PubMed  CAS  Google Scholar 

  • Jia, X.Y., Briese, T., Jordan, I., Rambaut, A., Chi, H.C., Mackenzie, J.S., Hall, R.A., Scherret, J., and Lipkin, W.I. (1999). Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet 354,1971–1972.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y., Moudy, R.M., Dupuis, A.P., III, Ngo, K.A., Maffei, J.G., Jerzak, G.V., Franke, M.A., Kauffman, E.B., and Kramer, L.D. (2007). Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367,339–347.

    Article  PubMed  CAS  Google Scholar 

  • Kinney, R.M., Huang, C.Y., Whiteman, M.C., Bowen, R.A., Langevin, S.A., Miller, B.R., and Brault, A.C. (2006). Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol 87,3611–3622.

    Article  PubMed  CAS  Google Scholar 

  • Kipp, A.M., Lehman, J.A., Bowen, R.A., Fox, P.E., Stephens, M.R., Klenk, K., Komar, N., and Bunning, M.L. (2006). West Nile virus quantification in feces of experimentally infected American and fish crows. Am J Trop Med Hyg 75,688–690.

    PubMed  Google Scholar 

  • Klee, A.L., Maidin, B., Edwin, B., Poshni, I., Mostashari, F., Fine, A., Layton, M., and Nash, D. (2004). Long-term prognosis for clinical West Nile virus infection. Emerg Infect Dis 10,1405–1411.

    PubMed  Google Scholar 

  • Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bowen, R., and Bunning, M. (2003). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9,311–322.

    PubMed  Google Scholar 

  • Kramer, L.D., and Bernard, K.A. (2001). West Nile virus infection in birds and mammals. Ann NY Acad Sci 951,84–93.

    Article  PubMed  CAS  Google Scholar 

  • LaDeau, S.L., Kilpatrick, A.M., and Marra, P.P. (2007). West Nile virus emergence and large-scale declines of North American bird populations. Nature 447,710–713.

    Article  PubMed  CAS  Google Scholar 

  • Lanciotti, R.S., Ebel, G.D., Deubel, V., Kerst, A.J., Murri, S., Meyer, R., Bowen, M., McKinney, N., Morrill, W.E., Crabtree, M.B.et al., (2002). Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298,96–105.

    Article  PubMed  CAS  Google Scholar 

  • Lanciotti, R.S., Roehrig, J.T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K.E., Crabtree, M.B., Scherret, J.H.et al., (1999). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337.

    Article  PubMed  CAS  Google Scholar 

  • Langevin, S.A., Brault, A.C., Panella, N.A., Bowen, R.A., and Komar, N. (2005). Variation in virulence of West Nile virus strains for house sparrows (Passer domesticus). Am J Trop Med Hyg 72,99–102.

    PubMed  Google Scholar 

  • Li, L., Barrett, A.D.T., and Beasley, D.W.C. (2005). Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology 335,99–105.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W.J., Wang, X.J., Clark, D.C., Lobigs, M., Hall, R.A., and Khromykh, A.A. (2006). A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates Kinney, R., virus virulence in mice. J Virol 80,2396–2404.

    Article  PubMed  CAS  Google Scholar 

  • Lvov, D.K., Butenko, A.M., Gromashevsky, V.L., Kovtunov, A.I., Prilipov, A.G., Aristova, V.A., Dzharkenov, A.F., Samokhvalov, E.I., Savage, H.M. , et al. (2004). West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch Virol Suppl 85–96.

    Google Scholar 

  • Martina, B.E., Koraka, P., van den Doel, P., van Amerongen, G., Rimmelzwaan, G.F., and Osterhaus, A.D. (2008). Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine 26,153–157.

    Article  PubMed  CAS  Google Scholar 

  • Mathiot, C.C., Georges, A.J., and Deubel, V. (1990). Comparative analysis of West Nile virus strains isolated from human and animal hosts using monoclonal antibodies and cDNA restriction digest profiles. Res Virol 141,533–543.

    Article  PubMed  CAS  Google Scholar 

  • Morrey, J.D., Day, C.W., Julander, J.G., Blatt, L.M., Smee, D.F., and Sidwell, R.W. (2004a). Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem Chemother 15,101–109.

    CAS  Google Scholar 

  • Morrey, J.D., Day, C.W., Julander, J.G., Olsen, A.L., Sidwell, R.W., Cheney, C.D., and Blatt, L.M. (2004b). Modeling hamsters for evaluating West Nile virus therapies. Antiviral Res 63,41–50.

    Article  CAS  Google Scholar 

  • Nemeth, N., Gould, D., Bowen, R., and Komar, N. (2006). Natural and experimental West Nile virus infection in five raptor species. J Wildl Dis 42,1–13.

    PubMed  Google Scholar 

  • Paddock, C.D., Nicholson, W.L., Bhatnagar, J., Goldsmith, C.S., Greer, P.W., Hayes, E.B., Risko, J.A., Henderson, C., Blackmore, C.G., Lanciotti, R.S., et-al. (2006). Fatal hemor-rhagic fever caused by West Nile virus in the United States. Clin Infect Dis 42,1527–1535.

    Article  PubMed  Google Scholar 

  • Padgett, K.A., Reisen, W.K., Kahl-Purcell, N., Fang, Y., Cahoon-Young, B., Carney, R., Anderson, N., Zucca, L., Woods, L., Husted, S., et al. (2007). West Nile virus infection in tree squirrels (Rodentia: Sciuridae) in California, 2004–2005. Am J Trop Med Hyg 76,810–813.

    PubMed  Google Scholar 

  • Platt, K.B., Tucker, B.J., Halbur, P.G., Tiawsirisup, S., Blitvich, B.J., Fabiosa, F.G., Bartholomay, L.C., and Rowley, W.A. (2007). West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes. Emerg Infect Dis 13,831–837.

    PubMed  Google Scholar 

  • Puig-Basagoiti, F., Tilgner, M., Bennett, C.J., Zhou, Y., Munoz-Jordan, J.L., Garcia-Sastre, A., Bernard, K.A., and Shi, P.Y. (2007). A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology 361,229–241.

    Article  PubMed  CAS  Google Scholar 

  • Rappole, J.H., and Hubalek, Z. (2003). Migratory birds and West Nile virus. J Appl Microbiol 94(Suppl), 47S–58S.

    Article  PubMed  Google Scholar 

  • Ratterree, M.S., da Rosa, A.P., Bohm, R.P. , CogswellJr., F.B., Phillippi, K.M., Caillouet, K., Schwanberger, S., Shope, R.E., and Tesh, R.B. (2003). West Nile virus infection in nonhu-man primate breeding colony, concurrent with human epidemic, southern Louisiana. Emerg Infect Dis 9,1388–1394.

    PubMed  Google Scholar 

  • Ratterree, M.S., Gutierrez, R.A., Travassos da Rosa, A.P., Dille, B.J., Beasley, D.W.C., Bohm, R.P., Desai, S.M., Didier, P.J., Bikenmeyer, L.G., Dawson, G.J., et al. (2004). Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J Infect Dis 189,669–676.

    Article  PubMed  CAS  Google Scholar 

  • Razumov, I.A., Kazachinskaia, E.I., Ternovoi, V.A., Protopopova, E.V., Galkina, I.V., Gromashevskii, V.L., Prilipov, A.G., Kachko, A.V., Ivanova, A.V., L'Vov, D.K., et al. (2005). Neutralizing monoclonal antibodies against Russian strain of the West Nile virus. Viral Immunol 18,558–568.

    Article  PubMed  CAS  Google Scholar 

  • Salazar, P., Traub-Dargatz, J.L., Morley, P.S., Wilmot, D.D., Steffen, D.J., Cunningham, W.E., and Salman , M.D. (2004). Outcome of equids with clinical signs of West Nile virus infection and factors associated with death. J Am Vet Med Assoc 225,267–274.

    Article  PubMed  Google Scholar 

  • Samuel, M.A., and Diamond, M.S. (2006). Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80,9349–9360.

    Article  PubMed  CAS  Google Scholar 

  • Scherret, J.H., Mackenzie, J.S., Khromykh, A.A., and Hall, R.A. (2001a). Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951,361–363.

    Article  CAS  Google Scholar 

  • Scherret, J.H., Poidinger, M., Mackenzie, J.S., Broom, A.K., Deubel, V., Lipkin, W.I., Briese, T., Gould, E.A., and Hall, R.A. (2001b). The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7,697–705.

    Article  CAS  Google Scholar 

  • Sejvar, J.J. (2007). The long-term outcomes of human West Nile virus infection. Clin Infect Dis 44,1617–1624.

    Article  PubMed  Google Scholar 

  • Shirato, K., Kimura, T., Mizutani, T., Kariwa, H., and Takashima, I. (2004a). Different chem-okine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol 74,507–513.

    Article  CAS  Google Scholar 

  • Shirato, K., Miyoshi, H., Goto, A., Ako, Y., Ueki, T., Kariwa, H., and Takashima, I. (2004b). Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85,3637–3645.

    Article  CAS  Google Scholar 

  • Shirato, K., Miyoshi, H., Kariwa, H., and Takashima, I. (2006). The kinetics of proinflammatory cytokines in murine peritoneal macrophages infected with envelope protein-glycosylated or non-glycosylated West Nile virus. Virus Res 121,11–16.

    Article  PubMed  CAS  Google Scholar 

  • Shrestha, B., and Diamond, M.S. (2004). Role of CD8± T cells in control of West Nile virus infection. J Virol 78,8312–8321.

    Article  PubMed  CAS  Google Scholar 

  • Shrestha, B., Gottlieb, D., and Diamond, M.S. (2003). Infection and injury of neurons by West Nile encephalitis virus. J Virol 77,13203–13213.

    Article  PubMed  CAS  Google Scholar 

  • Venter, M., Myers, T.G., Wilson, M.A., Kindt, T.J., Paweska, J.T., Burt, F.J., Leman, P.A., and Swanepoel, R. (2005). Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 342,119–140.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T., Scully, E., Yin, Z., Kim, J.H., Wang, S., Yan, J., Mamula, M., Anderson, J.F., Craft, J., and Fikrig, E. (2003). IFN-gamma-producing gamma delta T cells help control murine West Nile virus infection. J Immunol 171,2524–2531.

    PubMed  CAS  Google Scholar 

  • Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., and Flavell, R.A. (2004). Tolllike receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10,1366–1373.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J.T., Pertel, P.E., Jones, R.C., Siston, A.M., Paul, W.S., Austin, C.C., and Gerber, S.I. (2004). Clinical characteristics and functional outcomes of West Nile Fever. Ann Intern Med 141,360–365.

    PubMed  Google Scholar 

  • Weaver, S.C., and Barrett, A.D.T. (2004). Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2, 789–801.

    Article  PubMed  CAS  Google Scholar 

  • Weingartl, H.M., Neufeld, J.L., Copps, J., and Marszal, P. (2004). Experimental West Nile virus infection in blue jays (Cyanocitta cristata) and crows (Corvus brachyrhynchos). Vet Pathol 41,362–370.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, J.A., Whiteman, M.C., Beasley, D.W.C., Davis, C.T., Zhang, S., Schneider, B.S., Higgs, S., Kinney, R.M., and Barrett, A.D.T. (2006). A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349,245–253.

    Article  PubMed  CAS  Google Scholar 

  • Wunschmann, A., Shivers, J., Carroll, L., and Bender, J. (2004). Pathological and immunohis-tochemical findings in American crows (Corvus brachyrhynchos) naturally infected with West Nile virus. J Vet Diagn Invest 16,329–333.

    PubMed  Google Scholar 

  • Xiao, S.Y., Guzman, H., Zhang, H., Travassos da Rosa, A.P., and Tesh, R.B. (2001). West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7,714–721.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beasley, D.W.C., Barrett, A.D.T. (2009). Virulence of West Nile Virus in Different Animal Hosts. In: West Nile Encephalitis Virus Infection. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79840-0_6

Download citation

Publish with us

Policies and ethics