New Findings in Primary Immunodeficiency

  • Andrew R. Gennery
  • Andrew J. Cant
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 634)


Primary immunodeficiencies (PIDs) are a group of genetically diverse diseases which affect distinct components of innate and acquired immunity, including the development and function of complement proteins, dendritic cells, granulocytes, natural killer cells, and T and B lymphocytes. The genetic basis of many of these diseases has now been established (Geha et al., 2007). Recently, a number of new single-gene defects have been discovered which confer vulnerability to multiple infections. Additionally, a whole range of disorders is being elucidated where gene defects cause pathogen-specific immunodeficiency, adding a new group of primary immunodeficiency disorders and broadening our concept of immune system failure (Fig. 1), bringing us closer to the notion that severe invasive infection with, for example, the ubiquitous organisms causing pneumococcal meningitis or herpes simplex encephalitis may not be caused by ‘bad luck’, but rather an inbuilt susceptibility to these...


Primary Immunodeficiency Herpes Simplex Encephalitis Severe Combine Immunodeficiency Common Variable Immunodeficiency Ectodermal Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abinun, M., Spickett, G., Appleton, A.L., Flood, T., and Cant, A.J. (1996). Anhidrotic ectodermal dysplasia associated with specific antibody deficiency. Eur J Pediatr. 155:146–147.PubMedCrossRefGoogle Scholar
  2. Ahnesorg, P., Smith, P., and Jackson, S.P. (2006). XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 124:301–313.PubMedCrossRefGoogle Scholar
  3. Aschenbrenner, K., D'Cruz, L.M., Vollmann, E.H., Hinterberger, M., Emmerich, J., Swee, L.K., Rolink, A., and Klein, L. (2007). Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol. 8:351–358.PubMedCrossRefGoogle Scholar
  4. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 27:20–21.PubMedCrossRefGoogle Scholar
  5. Bohn, G., Allroth, A., Brandes, .G., Thiel, J., Glocker, E., Schäffe, A.A., Rathinam, C., Taub, N., Tei, D., Zeidler, C., Dewey, R.A., Geffers, R., Buer, J., Huber, L.A., Welte, K., Grimbacher, B., and Klein, C. (2007). A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med. 13:38–45.PubMedCrossRefGoogle Scholar
  6. Buck, D., Moshous, D., de Chasseval, R., Ma, Y., le Deist, F., Cavazzana-Calvo, M., Fischer, A., Casanova, J.L., Lieber, M.R., and de Villartay, J.P. (2006a). Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol. 36:224–235.Google Scholar
  7. Buck, D., Maliver, L., de Chasseval, R., Barraud, A., Fondanèche, M.C., Sanal, O., Plebani, A., Stéphan, J.L., Hufnagel, M., le Deist, F., Fischer, A., Durandy, A., de Villartay, J.P., and Revy, P. (2006b). Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 124:287–299.Google Scholar
  8. Casrouge, A., Zhang, S.Y., Eidenschenk, C., Jouanguy, E., Puel, A., Yang, K., Alcais, A., Picard, C., Mahfoufi, N., Nicolas, N., Lorenzo, L., Plancoulaine, S., Sénéchal, B., Geissmann, F., Tabeta, K., Hoebe, K., Du, X., Miller, R.L., Héron, B., Mignot, C., de Villemeur, T.B., Lebon, P., Dulac, O., Rozenberg, F., Beutler, B., Tardieu, M., Abel, L., and Casanova, J.L. (2006). Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 314:308–312.PubMedCrossRefGoogle Scholar
  9. Castigli, E., Wilson, S.A., Garibyan, L., Rachid, R., Bonilla, F., Schneider, L., and Geha, R.S. (2005). TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 37:829–834.PubMedCrossRefGoogle Scholar
  10. Caudy, A.A., Reddy, S.T., Chatila, T., Atkinson, J.P., and Verbsky, J.W. (2007). CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 119:482–487.PubMedCrossRefGoogle Scholar
  11. Cavazzana-Calvo M., and Fischer, A. (2007). Gene therapy for severe combined immunodeficiency: are we there yet? J Clin Invest. 117:1456–1465PubMedCrossRefGoogle Scholar
  12. Coffey, A.J., Heath, P., Wray, P., Pavitt, R., Wilkinson, J., Leversha, M., Huckle, E., Shaw-Smith, C.J., Dunham, A., Rhodes, S., Schuster, V., Porta, G., Yin, L., Serafini, P., Sylla, B., Zollo, M., Franco, B., Bolino, A., Seri, M., Lanyi, A., Davis, J.R., Webster, D., Harris, A., Lenoir, G., de St Basile, G., Jones, A., Behloradsky, B.H., Achatz, H., Murken, J., Fassle,r R., Sumegi, J., Romeo, G., Vaudin, M., Ross, M.T., Meindl, A., and Bentley, D.R. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 20:129–135.PubMedCrossRefGoogle Scholar
  13. Courtois, G., Smahi, A., Reichenbach, J., Döffinger, R., Cancrini, C., Bonnet, M., Puel, A., Chable-Bessia, C., Yamaoka, S., Feinberg, J., Dupuis-Girod, S., Bodemer, C., Livadiotti, S., Novelli, F., Rossi, P., Fischer, A., Israël, A., Munnich, A., Le Deist, F., and Casanova, J.L. (2003). A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest. 112:1108–1115.PubMedGoogle Scholar
  14. Dai, Y., Kysela, B., Hanakahi, L.A., Manolis, K., Riballo, E., Stumm, M., Harville, T.O., West, S.C., Oettinger, M.A., and Jeggo, P.A. (2003). Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A. 100:2462–2467.PubMedCrossRefGoogle Scholar
  15. Dale, D.C., Person, R.E., Bolyard, A.A., Aprikyan, A.G., Bos, C., Bonilla, M.A., Boxer, L.A., Kannourakis, G., Zeidler, C., Welte, K., Benson, K.F., and Horwitz, M. (2000). Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. ;96:2317–2322.PubMedGoogle Scholar
  16. Devriendt, K., Kim, A.S., Mathijs, G., Frints, S.G., Schwartz, M., Van Den Oord, J.J., Verhoef, G.E., Boogaerts, M.A., Fryns, J.P., You, D., Rosen, M.K., and Vandenberghe, P. (2001). Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 27:313–317.PubMedCrossRefGoogle Scholar
  17. Döffinger, R., Smahi, A., Bessia, C., Geissmann, F. Feinberg, J., Durandy, A., Bodemer, C., Kenwrick, S., Dupuis-Girod, S., Blanche, S., Wood, P., Rabia, S.H., Headon, D.J., Overbeek, P.A., Le Deist, F., Holland, S.M., Belani, K., Kumararatne, D.S., Fischer, A., Shapiro, R., Conley, M.E., Reimund, E., Kalhoff, H., Abinun, M., Munnich, A., Israël, A., Courtois, G., and Casanova, J.L. (2001). X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 27:277–285.PubMedCrossRefGoogle Scholar
  18. Dupuis-Girod, S., Corradini, N., Hadj-Rabia, S., Fournet, J.C., Faivre, L., Le Deist, F., Durand, P., Döffinger, R., Smahi, A., Israel, A., Courtois, G., Brousse, N., Blanche, S., Munnich, A., Fischer, A., Casanova, J.L., Bodemer, C. (2002). Ostespetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incartinentia pigmenti in his mother. Pediatrics. Jun; 109(6):e97.Google Scholar
  19. Enders, A., Fisch, P., Schwarz, K., Duffner, U., Pannicke, U., Nikolopoulos, E., Peters, A., Orlowska-Volk, M., Schindler, D., Friedrich, W., Selle, B., Niemeyer, C., and Eh,l S. (2006). A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol. 176:5060–5068.PubMedGoogle Scholar
  20. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S.H., Tanasa, B., Hogan, P.G., Lewis, R.S., Daly, M., and Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 441:179–185.PubMedCrossRefGoogle Scholar
  21. Geha, R.S., Notarangelo, L.D., Casanova, J.L., Chapel, H., Conley, M.E., Fischer, A., Hammarström, L., Nonoyama, S., Ochs, H.D., Puck, J.M., Roifman, C., Seger, R., and Wedgwood, J.; International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. (2007). Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 120:776–794.PubMedCrossRefGoogle Scholar
  22. Grimbacher, B., Hutloff, A., Schlesier, M., Glocker, E., Warnatz, K., Dräger, R., Eibel, H., Fischer, B., Schäffe, A.A., Mages, H.W., Kroczek, R.A., and Peter, H.H. (2003). Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 4:261–268.PubMedCrossRefGoogle Scholar
  23. Holland, S.M., DeLeo, F.R., Elloumi, H.Z., Hsu, A.P., Uzel, G., Brodsky, N., Freeman, A.F., Demidowich, A., Davis, J., Turner, M.L., Anderson, V.L., Darnell, D.N., Welch, P.A., Kuhns, D.B., Frucht, D.M., Malech, H.L., Gallin, J.I., Kobayashi, S.D., Whitney, A.R., Voyich, J.M., Musser, J.M., Woellner, C., Schäffer, A.A., Puck, J.M., and Grimbacher, B. (2007). STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 357:1608–1619.PubMedCrossRefGoogle Scholar
  24. Janssen, R., van Wengen, A., Hoeve, M.A., ten Dam, M., van der Burg, M., van Dongen, J., van de Vosse, E., van Tol, M., Bredius, R., Ottenhoff, T.H., Weemaes, C., van Dissel, J.T., and Lankester, A. (2004). The same IkappaBalpha mutation in two related individuals leads to completely different clinical syndromes. J Exp Med. 200:559–568.PubMedCrossRefGoogle Scholar
  25. Kanegane, H., Agematsu, K., Futatani, T., Sira, M.M., Suga, K., Sekiguchi, T., van Zelm, M.C., Miyawaki, T. (2007). Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. Dec; 8(8):663–670.Google Scholar
  26. Kaplan, J., De Domenico, I., and Ward, D.M. (2008). Chediak-Higashi syndrome. Curr Opin Hematol. 15:22–29.PubMedCrossRefGoogle Scholar
  27. Kekäläinen, E., Tuovinen, H., Joensuu, J., Gylling, M., Franssila, R., Pöntynen, N., Talvensaari, K., Perheentupa, J., Miettinen, A., and Arstila, T.P. (2007). A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol. 178:1208–1215.PubMedGoogle Scholar
  28. Klein,C., Grudzie, M., Appaswamy, G., Germeshausen, M., Sandrock, I., Schäffer, A.A., Rathinam, C., Boztug, K., Schwinzer, B., Rezaei, N., Bohn, G., Melin, M., Carlsson, G., Fadeel, B., Dahl, N., Palmblad, J., Henter, J.I., Zeidler, C., Grimbacher, B., and Welte, K. (2007). HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 39:86–92.PubMedCrossRefGoogle Scholar
  29. Kostmann, R. (1956). Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr. 45(Suppl 105):1–78.Google Scholar
  30. Ku, C.L., von Bernuth, H., Picard, C., Zhang, S.Y., Chang, H.H., Yang, K., Chrabieh, M., Issekutz, A.C., Cunningham, C.K., Gallin, J., Holland, S.M., Roifman, C., Ehl, S., Smart, J., Tang, M., Barrat, F.J., Levy, O., McDonald, D., Day-Good, N.K., Miller, R., Takada, H., Hara, T., Al-Hajjar, S., Al-Ghonaium, A., Speert, D, Sanlaville, D., Li, X., Geissmann, F., Vivier, E., Maródi, L., Garty, B.Z., Chapel, H., Rodriguez-Gallego, C., Bossuyt, X., Abel, L., Puel, A., and Casanova, J.L. (2007). Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med. 204: 2407–2422.PubMedCrossRefGoogle Scholar
  31. Marrella, V., Poliani, P.L., Casati, A., Rucci, F., Frascoli, L., Gougeon, M.L., Lemercier, B., Bosticardo, M., Ravanini, M., Battaglia, M., Roncarolo, M.G., Cavazzana-Calvo, M., Facchetti, F., Notarangelo, L.D., Vezzoni, P., Grassi, F., and Villa, A. (2007). A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndrome. J Clin Invest. 117:1260–1269.PubMedCrossRefGoogle Scholar
  32. Menasche, G., Feldmann, J., Houdusse, A., Desaymard, C., Fischer, A., Goud, B.,and de Saint Basile, G. (2003). Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Blood. 2003 101:2736–2742.PubMedCrossRefGoogle Scholar
  33. Minegishi,Y., Saito, M., Morio, T., Watanabe, K., Agematsu, K., Tsuchiya, S., Takada, H., Hara, T., Kawamura, N., Ariga, T., Kaneko, H., Kondo, N., Tsuge, I., Yachie, A., Sakiyama, Y., Iwata, T., Bessho, F., Ohishi, T., Joh, K., Imai, K., Kogawa, K., Shinohara, M., Fujieda, M., Wakiguchi, H., Pasic, S., Abinun, M., Ochs, H.D., Renner, E.D., Jansson, A., Belohradsky, B.H., Metin, A., Shimizu, N., Mizutani, S., Miyawaki, T., Nonoyama, S., and Karasuyama, H. (2006). Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 25:745–755.PubMedCrossRefGoogle Scholar
  34. Minegishi, Y., Saito, M., Tsuchiya, S., Tsuge, I., Takada, H., Hara, T., Kawamura, N., Ariga, T., Pasic, S., Stojkovic, O., Metin, A., and Karasuyama, H. (2007). Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 448:1058–1062.PubMedCrossRefGoogle Scholar
  35. Niehues, T., Reichenbach, J., Neubert, J., Gudowius, S., Puel, A., Horneff, G., Lainka, E., Dirksen, U., Schroten, H., Döffinger, R., Casanova, J.L., and Wahn, V. (2004). Nuclear factor kappaB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol. 114:1456–1462.PubMedCrossRefGoogle Scholar
  36. O'Driscoll, M., Cerosaletti, K.M., Girard, P.M., Dai, Y., Stumm, M., Kysela, B., Hirsch, B., Gennery, A., Palmer, S.E., Seidel, J., Gatti, R.A., Varon, R., Oettinger, M.A., Neitzel, H., Jeggo, P.A., and Concannon, P. (2001). DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 8:1175–1185.PubMedCrossRefGoogle Scholar
  37. Orange, J.S., Levy, O., Brodeur, S.R., Krzewski, K., Roy, R.M., Niemela, J.E., Fleisher, T.A., Bonilla, F.A., and Geha, R.S. (2004). Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Allergy Clin Immunol. 114:650–656.PubMedCrossRefGoogle Scholar
  38. Perheentupa, J. (2006). Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 91:2843–2850.PubMedCrossRefGoogle Scholar
  39. Riballo, E., Critchlow, S.E., Teo, S.H., Doherty, A.J., Priestley, A., Broughton, B., Kysela, B., Beamish, H., Plowman, N., Arlett, C.F., Lehmann, A.R., Jackson, S.P., and Jeggo, P.A. (1999). Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol. 9:699–702.PubMedCrossRefGoogle Scholar
  40. Rieux-Laucat, F., Hivroz, C., Lim, A., Mateo, V., Pellier, I., Selz, F., Fischer, A., and Le Deist, F. (2006). Inherited and somatic CD3zeta mutations in a patient with T-cell deficiency. N Engl J Med. 354:1913–1921.PubMedCrossRefGoogle Scholar
  41. Rigaud, S., Fondanèche, M.C., Lamber, N., Pasquier, B., Mateo, V., Soulas, P., Galicier, L., Le Deist, F., Rieux-Laucat, F., Revy, P., Fischer, A., de Saint Basile, G., and Latour, S. (2006). XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 444:110–114.PubMedCrossRefGoogle Scholar
  42. Roberts. J.L., Lauritsen, J.P., Cooney, M., Parrott, R.E., Sajaroff, E.O., Win, C.M., Keller, M.D., Carpenter, J.H., Carabana, J., Krangel, M.S., Sarzotti, M., Zhong, X.P., Wiest, D.L., and Buckley, R.H0. (2007). T-B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3zeta subunit of the T-cell antigen receptor complex. Blood. 109:3198–3206.PubMedCrossRefGoogle Scholar
  43. Ryan, K.R., Lawson, C.A., Lorenzi, A.R., Arkwright, P.D., Isaacs, J.D., and Lilic, D. (2005). CD4+CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Allergy Clin Immunol. 116:1158–1159.PubMedCrossRefGoogle Scholar
  44. Salzer, U., Maul-Pavicic, A., Cunningham-Rundles, C., Urschel, S., Belohradsky, B.H., Litzman, J., Holm, A., Franco, J.L., Pleban, A., Hammarstrom, L., Skrab, A., Schwinger, W., and Grimbacher, B. (2004). ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol. 113:234–240.PubMedCrossRefGoogle Scholar
  45. Salzer, U., Chapel, H.M. Webster, A.D., Pan-Hammarström, Q., Schmitt-Graeff, A., Schlesier, M., Peter, H.H., Rockstroh, J.K., Schneider, P., Schäffer, A.A., Hammarström, L., and Grimbacher, B. (2005). Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 37:820–828.PubMedCrossRefGoogle Scholar
  46. Sekine, H., Ferreira, R.C., Pan-Hammarström, Q., Graham, R.R., Ziemba, B., de Vries, S.S., Liu, J., Hippen, K., Koeuth, T., Ortmann, W., Iwahori, A., Elliott, M.K., Offer, S., Skon, C., Du, L., Novitzke, J., Lee, A.T., Zhao, N., Tompkins, J.D., Altshuler, D., Gregersen, P.K., Cunningham-Rundles, C., Harris, R.S., Her, C., Nelson, D.L., Hammarström, L., Gilkeson, G.S., and Behrens, T.W. (2007). Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci U S A. 104:7193–7198.PubMedCrossRefGoogle Scholar
  47. Sharfe, N., Dadi, H.K., Shahar, M., and Roifman, C.M. (1997). Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A. 94:3168–3171.PubMedCrossRefGoogle Scholar
  48. Sobacchi, C., Marrella, V., Rucci, F., Vezzoni, P., and Villa, A. (2006). RAG-dependent primary immunodeficiencies. Hum Mutat. 27:1174–1184.PubMedCrossRefGoogle Scholar
  49. van der Burg, M., van Veelen, L.R., Verkaik, N.S., Wiegant, W.W., Hartwig, N.G., Barendregt, B.H., Brugmans, L., Raams, A., Jaspers, N.G., Zdzienicka, M.Z., van Dongen, J.J., and van Gent, D.C. (2006). A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest. 116:137–145.PubMedCrossRefGoogle Scholar
  50. van Zelm, M.C., Reisli, I., van der Burg, M., Castaño, D., van Noesel, C.J., van Tol, M.J., Woellner, C., Grimbacher, B., Patiño, P.J., van Dongen, J.J., and Franco, J.L. (2006). An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 354:1901–1912.PubMedCrossRefGoogle Scholar
  51. Warnatz, K., Salzer,U., Gutenberger, S., Schlesier, M., Grimbacher,B., Peter, H.H., and Eibel, H. (2005). Finally Found: Human BAFF-R Deficiency Causes Hypogammaglobulinemia. Clin Immunol. 115 (Suppl 1): S20Google Scholar
  52. Warnatz, K., Bossaller, L., Salze,r U., Skrabl-Baumgartner, A., Schwinger, W., van der Burg, M., van Donge, J.J., Orlowska-Volk, M., Knoth, R., Durandy, A., Draeger, R, Schlesier, M., Peter, H.H., and Grimbacher, B. (2006). Human ICOS deficiency abroga.tes the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood. 107:3045–3052.PubMedCrossRefGoogle Scholar
  53. Wei, M.L. (2006). Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res. 19:19–42.PubMedCrossRefGoogle Scholar
  54. Zhang, S.Y., Jouanguy, E., Ugolini, S., Smahi, A., Elain, G., Romero, P., Segal, D., Sancho-Shimizu, V., Lorenzo, L., Puel, A., Picard, C., Chapgier, A., Plancoulaine, S., Titeux, M., Cognet, C., von Bernuth, H., Ku, C.L., Casrouge, A., Zhang, X.X., Barreiro, L., Leonard, J., Hamilton, C., Lebon, P., Héron, B., Vallée, L., Quintana-Murci, L., Hovnanian, A., Rozenberg, F., Vivier, E., Geissmann, F., Tardieu, M., Abel, L., and Casanova, J.L. (2007). TLR3 deficiency in patients with herpes simplex encephalitis. Science.317:1522–1527.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Newcastle General Hospital, Westgate Road, Newcastle upon Tyne

Personalised recommendations