Skip to main content

Human Genetic Resistance to Malaria

  • Chapter
  • First Online:
Hot Topics in Infection and Immunity in Children V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 634))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, S.J. et al. Alpha(+)thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci U S A 94, 14736–41 (1997).

    Google Scholar 

  • Arese, P. How genetics and biology helped humanity to survive falciparum malaria. Parassitologia 48, 553–9 (2006).

    PubMed  CAS  Google Scholar 

  • Ayi, K., Turrini, F., Piga, A. and Arese, P. Enhanced phagocytosis of ring-parasitized mutant erythrocytes. A common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia-trait. Blood 104, 3364–71 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Boyd, M.F. A comparative study of all aspects of this group of diseases from a global standpoint. in Malariology, Vol. 1 (ed. Boyd, M.F.) 3–25 (Saunders, Philadelphia, 1949).

    Google Scholar 

  • Brittenham, G. et al. Alpha globin gene number: population and restriction endonuclease studies. Blood 55, 706–9 (1980).

    PubMed  CAS  Google Scholar 

  • Burton, P.R., Tobin, M.D. and Hopper, J.L. Key concepts in genetic epidemiology. Lancet 366, 941–51 (2005).

    Article  PubMed  Google Scholar 

  • Camus, D. and Hadley, T.J. A plasmodium falciparum antigen that binds to host erythrocytes and merozoites. . Science 230, 553–6 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Cerami, C. et al. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70, 1021–33 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Schlichtherle, M. and Wahlgren, M. Molecular aspects of severe malaria. Clin Microbiol Rev 13, 439–50 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cordell, H.J. and Clayton, D.G. Genetic association studies. Lancet 366, 1121–31 (2005).

    Article  PubMed  Google Scholar 

  • Dolan, S.A., Miller, L.H. and Wellems, T.E. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Invest 86, 618–24 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Dunn, F.L. On the antiquity of malaria in the Western hemisphere. Hum Biol 37, 385–93 (1965).

    PubMed  CAS  Google Scholar 

  • Flint, J. et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 321, 744–50 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Hill, A.V. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Hoeprich, P.D. Host-parasite relationships and the pathogenesis of infectious disease. in Infectious diseases, Vol. 1 (ed. Hoeprich, P.D.J.M.C.) 41–53 (Lippencott, Philadelphia, 1989).

    Google Scholar 

  • Kulozik, A.E., Kar, B.C., Serjeant, G.R., Serjeant, B.E. and Weatherall, D.J. The molecular basis of alpha thalassemia in India. Its interaction with the sickle cell gene. Blood 71, 467–72 (1988).

    PubMed  CAS  Google Scholar 

  • Kwiatkowski, D.P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77, 171–92 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski, D.P. and Luoni, G. Host genetic factors in resistance and susceptibility to malaria. Parassitologia 48, 450–67 (2006).

    PubMed  Google Scholar 

  • Labie, D. et al. Haplotypes in tribal Indians bearing the sickle gene: evidence for the unicentric origin of the beta S mutation and the unicentric origin of the tribal populations of India. Hum Biol 61, 479–91 (1989).

    PubMed  CAS  Google Scholar 

  • Livingstone, F.B. Anthropological implications of sickle cell gene distribution in West Africa. Am J Anthropol 60, 533–62 (1958).

    Article  Google Scholar 

  • Livingstone, F.B. Simulation of the diffusion of the beta-globin variants in the Old World. Hum Biol 61, 297–309 (1989).

    PubMed  CAS  Google Scholar 

  • Mackinnon, M.J., Mwangi, T.W., Snow, R.W., Marsh, K. and Williams, T.N. Heritability of malaria in Africa. Plos Med 2, e340 (2005).

    Article  PubMed  Google Scholar 

  • Mackintosh, C.L., Beeson, J.G. and Marsh, K. Clinical features and pathogenesis of severe malaria. Trends Parasitol 20, 597–603 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Maitland, K. and Marsh, K. Pathophysiology of severe malaria in children. Acta Trop 90, 131–40 (2004).

    Article  PubMed  Google Scholar 

  • Marsh, K. Malaria – a neglected disease? Parasitology 104, S53–69 (1992).

    Article  PubMed  Google Scholar 

  • Marsh, K. et al. Indicators of life-threatening malaria in African children. N Engl J Med 332, 1399–1404 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Marsh, K., English, M., Crawley, J. and Peshu, N. The pathogenesis of severe malaria in African children. Ann Trop Med Parasitol 90, 395–402 (1996).

    PubMed  CAS  Google Scholar 

  • May, J. et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. Jama 297, 2220–6 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, G.H., Hadley, T.J., McGinniss, M.H., Klotz, F.W. and Miller, L.H. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood 67, 1519–21 (1986).

    PubMed  CAS  Google Scholar 

  • Mockenhaupt, F.P. et al. α+thalassemia protects African children from severe malaria. Blood 104, 2003–2006 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Modiano, G. et al. Protection against malaria morbidity: near-fixation of the alpha- thalassemia gene in a Nepalese population. Am J Hum Genet 48, 390–7 (1991).

    PubMed  CAS  Google Scholar 

  • Oppenheimer, S.J. et al. The interaction of alpha thalassaemia with malaria. Trans R Soc Trop Med Hyg 81, 322–6 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Sim, B.K., Chitnis, C.E., Wasniowska, K., Hadley, T.J. and Miller, L.H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264, 1941–4 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. and Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–7 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Terrenato, L. et al. Decreased malaria morbidity in the Tharu people compared to sympatric populations in Nepal. Ann Trop Med Parasitol 82, 1–11 (1988).

    PubMed  CAS  Google Scholar 

  • Wambua, S. et al. The effect of α+-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med 3, 5, e158 (2006).

    Google Scholar 

  • Weatherall, D.J. and Clegg, J.B. The thalassaemia syndromes, (Blackwell Scientific Publications, Oxford, 2002).

    Google Scholar 

  • Willcox, M., Bjorkman, A. and Brohult, J. Falciparum malaria and beta-thalassaemia trait in northern Liberia. Ann Trop Med Parasitol 77, 335–47 (1983).

    PubMed  CAS  Google Scholar 

  • Williams, T.N. et al. High incidence of malaria in alpha-thalassaemic children. Nature 383, 522–5 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Williams, T.N. et al. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. J Infect Dis 192, 178–86 (2005a).

    Google Scholar 

  • Williams, T.N. et al. Both heterozygous and homozygous alpha+thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106, 368–71 (2005b).

    Google Scholar 

  • Williams, T.N. et al. Negative epistasis between the malaria-protective effects of α+-thalassemia and the sickle cell trait. Nat Genet 37, 1253–7 (2005c).

    Google Scholar 

  • World_Health_Organization. Severe and complicated malaria. World Health Organization, Division of Control of Tropical Diseases. Trans R Soc Trop Med Hyg 84 Suppl 2, 1–65 (1990).

    Article  Google Scholar 

Download references

Acknowledgments

TNW acknowledges the support of the Wellcome Trust, UK, the European Network 6 BioMalpar Consortium and the INDEPTH Network of Demographic Surveillance Sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Williams, T.N. (2009). Human Genetic Resistance to Malaria. In: Finn, A., Curtis, N., Pollard, A. (eds) Hot Topics in Infection and Immunity in Children V. Advances in Experimental Medicine and Biology, vol 634. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79838-7_20

Download citation

Publish with us

Policies and ethics