Skip to main content

Astrocytes in Control of the Biophysical Properties of Extracellular Space

  • Chapter
  • First Online:
Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α:

Extracellular volume fraction

ADC:

Apparent diffusion coefficient

ADCw:

Apparent diffusion coefficient of water

AMPA:

α-Amino-3-hydroxy-5-metyl-isoxazol-4-propionic acid

CNS:

Central nervous system

CSPG:

Chondroitin-sulphate proteoglycan

D:

Diffusion coefficient

dpw:

Day post wounding

DW-MRI:

Diffusion-weighted magnetic resonance imaging

EAE:

Experimental autoimmune encephalomyelitis

ECM:

Extracellular matrix

ECS:

Extracellular space

GABA:

γ-Aminobutyric acid

GFAP:

Glial fibrillary acidic protein

IOS:

Intrinsic optical signals

ISM:

Ion-selective microelectrode

k':

Nonspecific cellular uptake

[K+]e:

Extracellular concentration of potassium ions

λ :

Tortuosity

NMDA:

N-methyl-d-aspartate

pHe:

Extracellular pH

pHi:

Intracellular pH

RVD:

Regulatory volume decrease

TEA:

Tetraethylammonium

TMA:

Tetramethylammonium

TN:

Tenascin

WHO:

World Health Organization

References

  • Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: Wiring versus volume transmission. Neurosci 69:711–726

    CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular Biology of the Cell. Garland Science New York

    Google Scholar 

  • Andrew RD, Jarvis CR, Obeidat AS (1999) Potential sources of intrinsic optical signals imaged in live brain slices. Methods Enzymol 18:185–196

    CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CAS  Google Scholar 

  • Astion ML, Chvatal A, Orkand RK (1989) Na+./H+ exchange in glial cells of Necturus optic nerve Neurosci Lett 107:167–172

    PubMed  CAS  Google Scholar 

  • Astion ML, Chvatal A, Orkand RK (1991) Further studies of electrogenic Na+. /HCO3 − cotransport in glial cells of Necturus optic nerve: regulation of pHi Glia 4:461–468

    PubMed  CAS  Google Scholar 

  • Berger T, Schnitzer J, Kettenmann H (1991) Developmental changes in the membrane current pattern, K+. buffer capacity, and morphology of glial cells in the corpus callosum slice J Neurosci 11:3008–3024

    PubMed  CAS  Google Scholar 

  • Bonfanti L, Poulain DA, Theodosis DT (1993) Radial glia-like cells in the supraoptic nucleus of the adult rat. J Neuroendocrinol 5:1–5

    PubMed  CAS  Google Scholar 

  • Camby I, Belot N, Lefranc F, Sadeghi N, de Launoit Y, Kaltner H, Musette S, Darro F, Danguy A, Salmon I, Gabius HJ, Kiss R (2002) Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J Neuropathol Exp Neurol 61:585–596

    PubMed  CAS  Google Scholar 

  • Cardin V, Lezama R, Torres-Marquez ME, Pasantes-Morales H (2003) Potentiation of the osmosensitive taurine release and cell volume regulation by cytosolic Ca2+. rise in cultured cerebellar astrocytes Glia 44:119–128

    PubMed  Google Scholar 

  • Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21:510–515

    PubMed  CAS  Google Scholar 

  • Chesler M (1987) pH regulation in the vertebrate central nervous system: microelectrode studies in the brain stem of the lamprey. Can J Physiol Pharmacol 65:986–993

    PubMed  CAS  Google Scholar 

  • Chvatal A, Pastor A, Mauch M, Sykova E, Kettenmann H (1995) Distinct populations of identified glial cells in the developing rat spinal cord slice: ion channel properties and cell morphology. Eur J Neurosci 7:129–142

    PubMed  CAS  Google Scholar 

  • Chvatal A, Berger T, Vorisek I, Orkand RK, Kettenmann H, Sykova E (1997) Changes in glial K+ currents with decreased extracellular volume in developing rat white matter. J Neurosci Res 49:98–106

    PubMed  CAS  Google Scholar 

  • Chvatal A, Anderova M, Ziak D, Sykova E (1999) Glial depolarization evokes a larger potassium accumulation around oligodendrocytes than around astrocytes in gray matter of rat spinal cord slices. J Neurosci Res 56:493–505

    PubMed  CAS  Google Scholar 

  • Chvatal A, Anderova M, Sykova E (2004) Analysis of K+. accumulation reveals privileged extracellular region in the vicinity of glial cells in situ J Neurosci Res 78:668–682

    PubMed  CAS  Google Scholar 

  • Chvatal A, Anderova M, Hock M, Prajerova I, Neprasova H, Chvatal V, Kirchhoff F, Sykova E (2007) Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J Neurosci Res 85:260–271

    PubMed  CAS  Google Scholar 

  • Coles JA, Orkand RK (1983) Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake. J Physiol 340:157–174

    PubMed  CAS  Google Scholar 

  • Cserr HF, DePasquale M, Nicholson C, Patlak CS, Pettigrew KD, Rice ME (1991) Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia. J Physiol 442:277–295

    PubMed  CAS  Google Scholar 

  • Deitmer JW, Schlue WR (1987) The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. J Physiol 388:261–283

    PubMed  CAS  Google Scholar 

  • Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4:456–468

    PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF (1991) Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. Raven PressNew York

    Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    PubMed  Google Scholar 

  • Gullans SR, Verbalis JG (1993) Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med 44:289–301

    PubMed  CAS  Google Scholar 

  • Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and many functions. Faseb J 6:861–870

    PubMed  CAS  Google Scholar 

  • Harvey AR, Kendall CL, Sykova E (1997) The status and organization of astrocytes, oligodendroglia and microglia in grafts of fetal rat cerebral cortex. Neurosci Lett 228:58–62

    PubMed  CAS  Google Scholar 

  • Hatten ME, Liem RK, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233–243

    PubMed  CAS  Google Scholar 

  • Hatton GI (1997) Function-related plasticity in hypothalamus. Annu Rev Neurosci 20:375–397

    PubMed  CAS  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    PubMed  CAS  Google Scholar 

  • Hayen W, Goebeler M, Kumar S, Riessen R, Nehls V (1999) Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. J Cell Sci 112 (Pt 13):2241–2251

    PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249

    PubMed  CAS  Google Scholar 

  • Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239

    PubMed  Google Scholar 

  • Jendelova P, Sykova E (1991) Role of glia in K+. and pH homeostasis in the neonatal rat spinal cord Glia 4:56–63

    PubMed  CAS  Google Scholar 

  • Kempski O, Staub F, Jansen M, Baethmann A (1990) Molecular mechanisms of glial cell swelling in acidosis. Adv Neurol 52:39–45

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Orkand RK, Schachner M (1983) Coupling among identified cells in mammalian nervous system cultures. J Neurosci 3:506–516

    PubMed  CAS  Google Scholar 

  • Kilb W, Dierkes PW, Sykova E, Vargova L, Luhmann HJ (2006) Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus. J Neurosci Res 84:119–129

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (1991) Swelling and volume control in brain astroglial cells. In: Giles Raa, ed), pp Advances in Comparative and Environmental PhysiologySpringerBerlin: 81–117.

    Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Sankar P, O’Connor ER, Jalonen T, Goderie SK (1992) Functional consequences of astrocytic swelling. Prog Brain Res 94:57–68

    PubMed  CAS  Google Scholar 

  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215

    PubMed  CAS  Google Scholar 

  • Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5:195–208

    PubMed  CAS  Google Scholar 

  • Kriz N, Sykova E, Ujec E, Vyklicky L (1974) Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat. J Physiol 238:1–15

    PubMed  CAS  Google Scholar 

  • Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351

    PubMed  CAS  Google Scholar 

  • MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347

    PubMed  CAS  Google Scholar 

  • MacVicar BA, Hochman D (1991) Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J Neurosci 11:1458–1469

    PubMed  CAS  Google Scholar 

  • Mamata H, Mamata Y, Westin CF, Shenton ME, Kikinis R, Jolesz FA, Maier SE (2002) High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol 23:67–75

    PubMed  Google Scholar 

  • Margolis RK, Margolis RU (1993) Nervous tissue proteoglycans. Experientia 49:429–446

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Hossmann KA (1982) Cortical impedance and extracellular volume changes following middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 2:466–474

    PubMed  CAS  Google Scholar 

  • Mazel T, Simonova Z, Sykova E (1998) Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport 9:1299–1304

    PubMed  CAS  Google Scholar 

  • Meech RW, Thomas RC (1987) Voltage-dependent intracellular pH in Helix aspersa neurones. J Physiol 390:433–452

    PubMed  CAS  Google Scholar 

  • Mongin AA, Orlov SN (2001) Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8:77–88

    PubMed  CAS  Google Scholar 

  • Neprasova H, Anderova M, Petrik D, Vargova L, Kubinova S, Chvatal A, Sykova E (2007) High extracellular K(+) evokes changes in voltage-dependent K(+) and Na (+) currents and volume regulation in astrocytes. Pflugers Arch 453:839–849

    PubMed  CAS  Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 321:225–257

    CAS  Google Scholar 

  • Nicholson C, Tao L (1993a) Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 65:2277–2290

    CAS  Google Scholar 

  • Nicholson C, Tao L (1993b) Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 65:2277–2290

    CAS  Google Scholar 

  • Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215

    PubMed  CAS  Google Scholar 

  • Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17:877–885

    PubMed  CAS  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    PubMed  CAS  Google Scholar 

  • Pasantes Morales H, Schousboe A (1988) Volume regulation in astrocytes: a role for taurine as an osmoeffector. J Neurosci Res 20:503–509

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Franco R, Torres-Marquez ME, Hernandez-Fonseca K, Ortega A (2000) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol Biochem 10:361–370

    PubMed  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Piet R, Vargova L, Sykova E, Poulain DA, Oliet SH (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 101:2151–2155

    PubMed  CAS  Google Scholar 

  • Prokopova S, Vargova L, Sykova E (1997) Heterogeneous and anisotropic diffusion in the developing rat spinal cord. Neuroreport 8:3527–3532

    PubMed  CAS  Google Scholar 

  • Prokopova-Kubinova S, Vargova L, Tao L, Ulbrich K, Subr V, Sykova E, Nicholson C (2001) Poly[N. -(2-hydroxypropyl)methacrylamide] polymers diffuse in brain extracellular space with same tortuosity as small molecules Biophys J 80:542–548

    PubMed  CAS  Google Scholar 

  • Reum T, Olshausen F, Mazel T, Vorisek I, Morgenstern R, Sykova E (2002) Diffusion parameters in the striatum of rats with 6-hydroxydopamine-induced lesions and with fetal mesencephalic grafts. J Neurosci Res 70:680–693

    PubMed  CAS  Google Scholar 

  • Rice ME, Okada YC, Nicholson C (1993) Anisotropic and heterogeneous diffusion in the turtle cerebellum: Implications for volume transmission. J Neurophysiol 70:2035–2044

    PubMed  CAS  Google Scholar 

  • Roitbak T, Sykova E (1999) Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28:40–48

    PubMed  CAS  Google Scholar 

  • Sykova E (1992) Ionic and Volume Changes in the Microenvironment of Nerve and Receptor Cells. SpringerBerlin

    Google Scholar 

  • Siesjo BK, von Hanwehr R, Nergelius G, Nevander G, Ingvar M (1985) Extra- and intracellular pH in the brain during seizures and in the recovery period following the arrest of seizure activity. J Cereb Blood Flow Metab 5:47–57

    PubMed  CAS  Google Scholar 

  • Simonova Z, Svoboda J, Orkand P, Bernard CC, Lassmann H, Sykova E (1996) Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Physiol Res 45:11–22

    PubMed  CAS  Google Scholar 

  • Sims TJ, Gilmore SA (1992) Glial response to dorsal root lesion in the irradiated spinal cord. Glia 6:96–107

    PubMed  CAS  Google Scholar 

  • Sontheimer H, Kettenmann H (1988) Heterogeneity of potassium currents in cultured oligodendrocytes. Glia 1:415–420

    PubMed  CAS  Google Scholar 

  • Sontheimer H, Trotter J, Schachner M, Kettenmann H (1989) Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron 2:1135–1145

    PubMed  CAS  Google Scholar 

  • Svoboda J, Sykova E (1991) Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury. Brain Res 560:216–224

    PubMed  CAS  Google Scholar 

  • Sykova E (1997) Extracellular space in the CNS: its regulation, volume and geometry in normal and pathological neuronal function. Neuroscientist 3:28–41

    Google Scholar 

  • Sykova E (2001) Glial diffusion barriers during aging and pathological states. Prog Brain Res 132:339–363

    PubMed  CAS  Google Scholar 

  • Sykova E (2003) Diffusion parameters of the extracellular space. Israel J Chem 43:55–69

    CAS  Google Scholar 

  • Sykova E (2004a) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129:861–876

    CAS  Google Scholar 

  • Sykova E (2004b) Diffusion properties of the brain in health and disease. Neurochem Int 45:453–466

    CAS  Google Scholar 

  • Sykova E, Svoboda J (1990) Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation. Brain Res 512:181–189

    PubMed  CAS  Google Scholar 

  • Sykova E, Svoboda J, Simonova Z, Lehmenkuhler A, Lassmann H (1996) X-irradiation-induced changes in the diffusion parameters of the developing rat brain. Neuroscience 70:597–612

    PubMed  CAS  Google Scholar 

  • Sykova E, Mazel T, Simonova Z (1998) Diffusion constraints and neuron-glia interaction during aging. Exp Gerontol 33:837–851

    PubMed  CAS  Google Scholar 

  • Sykova E, Vargova L, Prokopova S, Simonova Z (1999a) Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 25:56–70

    CAS  Google Scholar 

  • Sykova E, Roitbak T, Mazel T, Simonova Z, Harvey AR (1999b) Astrocytes, oligodendroglia, extracellular space volume and geometry in rat fetal brain grafts. Neuroscience 91:783–798

    CAS  Google Scholar 

  • Sykova E, Mazel T, Hasenohrl RU, Harvey AR, Simonova Z, Mulders WH, Huston JP (2002) Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12:269–279

    PubMed  CAS  Google Scholar 

  • Sykova E, Vargova L, Kubinova S, Jendelova P, Chvatal A (2003) The relantionship between changes in intrinsic optical signals and cell swelling in rat spinal cord slices. NeuroImage 18:214–230

    PubMed  Google Scholar 

  • Sykova E, Vorisek I, Mazel T, Antonova T, Schachner M (2005a) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22:1873–1880

    Google Scholar 

  • Sykova E, Vorisek I, Antonova T, Mazel T, Meyer-Luehmann M, Jucker M, Hajek M, Ort M, Bures J (2005b) Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease. Proc Natl Acad Sci U S A 102:479–484

    CAS  Google Scholar 

  • Thomas RC (1977) The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol (Lond) 273:317–338

    CAS  Google Scholar 

  • Tao L, Masri D, Hrabetova S, Nicholson C (2002) Light scattering in rat neocortical slices differs during spreading depression and ischemia. Brain Res 952:290–300

    PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA (1993) Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 57:501–535

    PubMed  CAS  Google Scholar 

  • Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103:5567–5572

    PubMed  CAS  Google Scholar 

  • Thorne RG, Hrabetova S, Nicholson C (2004) Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 92:3471–3481

    PubMed  CAS  Google Scholar 

  • Villegas GM, Fernandez J (1966) Permeability to thorium dioxide of the intercellular spaces of the frog cerebral hemisphere. Exp Neurol 15:18–36

    PubMed  CAS  Google Scholar 

  • Van der Toorn A, Sykova E, Dijkhuizen RM, Vorisek I, Vargova L, Skobisova E, Van Lookeren Campagne M, Reese T, Nicolay K (1996) Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med 36:52–60

    PubMed  CAS  Google Scholar 

  • Van Harreveld A, Dafny N, Khattab FI (1971) Effects of calcium on electrical resistance and the extracellular space of cerebral cortex. Exp Neurol 31:358–367

    PubMed  CAS  Google Scholar 

  • Vargova L, Jendelova P, Chvatal A, Sykova E (2001a) Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. J Cereb Blood Flow Metab 21:1077–1089

    CAS  Google Scholar 

  • Vargova L, Chvatal A, Anderova M, Kubinova S, Ziak D, Sykova E (2001b) Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices. J Neurosci Res 65:129–138

    CAS  Google Scholar 

  • Vargova L, Homola A, Zamecnik J, Tichy M, Benes V, Sykova E (2003) Diffusion parameters of the extracellular space in human gliomas. Glia 42:77–88

    PubMed  Google Scholar 

  • Vizi ES (1980) Nonsynaptic modulation of transmitter release: Pharmacological implication. Trends Pharmacol Sci 1:172–175

    CAS  Google Scholar 

  • Vizi ES (1984) Non-synaptic Interaction Between Neurones: Modulation of Neurochemical Transmission. WileyChichester/New York

    Google Scholar 

  • Vizi ES (2000) Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52

    Google Scholar 

  • Vizi ES (2003) Non-synaptic interaction between neurons in the brain, an analog system: far from Cajal-Sherringtons’s galaxy. Bull Mem Acad R Med Belg 158:373–379

    PubMed  CAS  Google Scholar 

  • Vizi ES, Kiss JP, Lendvai B (2004) Nonsynaptic communication in the central nervous system. Neurochem Int 45:443–451

    PubMed  CAS  Google Scholar 

  • Vorisek I, Sykova E (1997a) Evolution of anisotropic diffusion in the developing rat corpus callosum. J Neurophysiol 78:912–919

    CAS  Google Scholar 

  • Vorisek I, Sykova E (1997b) Ischemia-induced changes in the extracellular space diffusion parameters, K+., and pH in the developing rat cortex and corpus callosum J Cereb Blood Flow Metab 17:191–203

    CAS  Google Scholar 

  • Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E (2002a) Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn Reson Med 48:994–1003

    CAS  Google Scholar 

  • Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E (2002b) Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn Reson Med 48:994–1003

    CAS  Google Scholar 

  • Walz W, Hertz L (1983) Intracellular ion changes of astrocytes in response to extracellular potassium. J Neurosci Res 10:411–423

    PubMed  CAS  Google Scholar 

  • Walz W, Hinks EC (1986) A transmembrane sodium cycle in astrocytes. Brain Res 368:226–232

    PubMed  CAS  Google Scholar 

  • Wieshmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD (1999) Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging 17:29–36

    PubMed  CAS  Google Scholar 

  • Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E (2004) Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol 30:338–350

    PubMed  CAS  Google Scholar 

  • Zhang H, Kelly G, Zerillo C, Jaworski DM, Hockfield S (1998) Expression of a cleaved brain-specific extracellular matrix protein mediates glioma cell invasion In vivo. J Neurosci 18:2370–2376

    PubMed  CAS  Google Scholar 

  • Zoli M, Jansson A, Sykova E, Agnati LF, Fuxe K (1999) Intercellular communication in the central nervous system. The emergence of the volume transmission concept and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 20:142–150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of grants AV0Z50390512 from the Academy of Sciences of the Czech Republic and LC554 from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vargova, L., Sykova, E. (2009). Astrocytes in Control of the Biophysical Properties of Extracellular Space. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_9

Download citation

Publish with us

Policies and ethics