Advertisement

Calcium ion signaling in astrocytes

  • Joachim W. Deitmer
  • Karthika Singaravelu
  • Christian Lohr
Chapter

8.1 Introduction

Ca2+signaling has been recognized as one of the major second messenger steps in most cell types, including astrocytes, the major macroglial cell type in vertebrate nervous systems. Astrocytes are by no means a homogeneous group of glial cells, but comprise a number of different cell types (see Chap. 1). However, in contrast to a decade ago, when mammalian astrocytes were divided into either protoplasmic type 1 or fibrous type II astrocytes, we assume today that there are many types of astrocytes in different brain regions. Another classification has recognized astrocytes with a dense distribution of glutamate uptake transporters (EAAT, excitatory amino acid transporter) and poor equipment of ionotropic glutamate receptors, while another type of astrocytes shows a poor expression of EAATs, but prominent distribution of ionotropic glutamate receptors. As with all of these cell type classifications established so far, there are known exemptions, such as the Bergmann...

Keywords

Glial Cell Ionotropic Glutamate Receptor Metabotropic Receptor Store Depletion CRAC Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2-APB

2-Aminoethoxydiphenyl borate

ADP

Adenosine diphosphate

AMPA

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ATP

Adenosine 5¢-triphosphate

BAPTA

1,2-bis(o-aminophenoxy)ethane-N,N,N¢,N¢-tetraacetic acid

CIF

Ca2+ influx factor

CRAC

Ca2+ release-activated channel

DAG

Diacylglycerol

DPCPX

8-Cyclopentyl-1,3-dipropylxanthine

EAAT

Excitatory amino acid transporter

ER

Endoplasmic reticulum

GABA

Gamma-aminobutyric acid

IP3

Inositol-1,4,5-trisphosphate

iPLA2

Ca2+-independent phopholipase A2

NMDA

N-methyl-d-aspartate

P2X

Ionotropic purinoceptor

P2Y

Metabotropic purinoceptor

PLC

Phospholipase C

SERCA

Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase

SNARE

Soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor

SOCE

Store-operated Ca2+ entry

STIM1

Stromal interaction molecule 1

VGLUT

Vesicular glutamate transporter

Notes

Acknowledgments

Our studies on this topic have been supported by grants from the Deutsche Forschungsgemeinschaft (SFB 530, GRK 845), which we gratefully acknowledge.

References

  1. Allen NJ, Attwell D (2004) The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. J Physiol 561:485–498.PubMedCrossRefGoogle Scholar
  2. Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829.PubMedGoogle Scholar
  3. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813.PubMedCrossRefGoogle Scholar
  4. Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840–9845.PubMedCrossRefGoogle Scholar
  5. Backus KH, Berger T (1995) Developmental variation of the permeability to Ca2+. of AMPA receptors in presumed hilar glial precursor cells Pflügers Arch 431:244–252.PubMedCrossRefGoogle Scholar
  6. Bajetto A, Bonavia R, Barbero S, Piccioli P, Costa A, Florio T, Schettini G (1999) Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73:2348–2357.PubMedCrossRefGoogle Scholar
  7. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323.PubMedCrossRefGoogle Scholar
  8. Beck A, Zur Nieden R, Schneider HP, Deitmer JW (2004) Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 35:47–58.PubMedCrossRefGoogle Scholar
  9. Beierlein M, Regehr WG (2006) Brief bursts of parallel fiber activity trigger calcium signals in Bergmann glia. J Neurosci 26:6958–6967.PubMedCrossRefGoogle Scholar
  10. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412.PubMedCrossRefGoogle Scholar
  11. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710.PubMedCrossRefGoogle Scholar
  12. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620.PubMedCrossRefGoogle Scholar
  13. Bigini P, Gardoni F, Barbera S, Cagnotto A, Fumagalli E, Longhi A, Corsi MM, Di Luca M, Mennini T (2006) Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neurosci 7:71.PubMedCrossRefGoogle Scholar
  14. Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570.PubMedCrossRefGoogle Scholar
  15. Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645.PubMedGoogle Scholar
  16. Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62:561–581.PubMedCrossRefGoogle Scholar
  17. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362.PubMedCrossRefGoogle Scholar
  18. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473.PubMedCrossRefGoogle Scholar
  19. Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosi 18:2520–2537.Google Scholar
  20. Czubayko U, Reiser G (1995) [Ca2+. ]i oscillations in single rat glioma cells induced by thrombin through activation of cell surface receptors Neuroreport 6:1249–1252.PubMedCrossRefGoogle Scholar
  21. Dallwig R, Vitten H, Deitmer JW (2000) A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Cell Calcium 28:247–259.PubMedCrossRefGoogle Scholar
  22. Dave V, Gordon GW, McCarthy KD (1991) Cerebral type 2 astroglia are heterogeneous with respect to their ability to respond to neuroligands linked to calcium mobilization. Glia 4:440–447.PubMedCrossRefGoogle Scholar
  23. Deitmer JW, Verkhratsky A, Lohr C (1998) Calcium signalling in glial cells. Cell Calcium 24:405–416.PubMedCrossRefGoogle Scholar
  24. Delumeau JC, Petitet F, Cordier J, Glowinski J, Premont J (1991) Synergistic regulation of cytosolic Ca2+. concentration in mouse astrocytes by NK1 tachykinin and adenosine agonists J Neurochem 57:2026–2035.PubMedCrossRefGoogle Scholar
  25. Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia 54:738–746.PubMedCrossRefGoogle Scholar
  26. Duffy S, MacVicar BA (1994) Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. Neuroscience 61:51–61.PubMedCrossRefGoogle Scholar
  27. Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15:5535–5550.PubMedGoogle Scholar
  28. Enkvist MO, Holopainen I, Akerman KE (1989) Glutamate receptor-linked changes in membrane potential and intracellular Ca2+. in primary rat astrocytes Glia 2:397–402.PubMedCrossRefGoogle Scholar
  29. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743. PubMedCrossRefGoogle Scholar
  30. Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2:316–324.PubMedCrossRefGoogle Scholar
  31. Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24:722–732.PubMedCrossRefGoogle Scholar
  32. Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690.PubMedCrossRefGoogle Scholar
  33. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562.PubMedCrossRefGoogle Scholar
  34. Finkbeiner S (1992) Calcium waves in astrocytes-filling in the gaps. Neuron 8:1101–1108.PubMedCrossRefGoogle Scholar
  35. Gimpl G, Walz W, Ohlemeyer C, Kettenmann H (1992) Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neurosci Lett 144:139–142.PubMedCrossRefGoogle Scholar
  36. Gimpl G, Kirchhoff F, Lang RE, Kettenmann H (1993) dentification of neuropeptide Y receptors in cultured astrocytes from neonatal rat brain. J Neurosci Res 34:198–205.PubMedCrossRefGoogle Scholar
  37. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143.PubMedCrossRefGoogle Scholar
  38. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528.PubMedGoogle Scholar
  39. Härtel K, Singaravelu K, Kaiser M, Neusch C, Hülsmann S, Deitmer JW (2007) Calcium influx mediated by the inwardly rectifying K+. channel Kir4.1 (KCNJ10) at low external K+ concentration Cell Calcium 42:271–280.PubMedCrossRefGoogle Scholar
  40. Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93:13268–13273.PubMedCrossRefGoogle Scholar
  41. Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96.PubMedCrossRefGoogle Scholar
  42. Hirase H, Creso J, Singleton M, Bartho P, Buzsaki G (2004) Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia 46:95–100.PubMedCrossRefGoogle Scholar
  43. Ho C, Hicks J, Salter MW (1995) A novel P2. -purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat Br J Pharmacol 116:2909–2918.PubMedGoogle Scholar
  44. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356.PubMedCrossRefGoogle Scholar
  45. Inagaki N, Fukui H, Ito S, Yamatodani A, Wada H (1991) Single type-2 astrocytes show multiple independent sites of Ca2+. signaling in response to histamine Proc Natl Acad Sci USA 88:4215–4219.PubMedCrossRefGoogle Scholar
  46. James G, Butt AM (2001) P2. X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ Cell Calcium 30:251–259.PubMedCrossRefGoogle Scholar
  47. Jensen AM, Chiu SY (1991) Differential intracellular calcium responses to glutamate in type 1 and type 2 cultured brain astrocytes. J Neurosci 11:1674–1684.PubMedGoogle Scholar
  48. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339.PubMedCrossRefGoogle Scholar
  49. Jung S, Pfeiffer F, Deitmer JW (2000) Histamine-induced calcium entry in rat cerebellar astrocytes: evidence for capacitative and non-capacitative mechanisms. J Physiol 61:549–561.CrossRefGoogle Scholar
  50. Jurzak M, Muller AR, Gerstberger R (1995) Characterization of vasopressin receptors in cultured cells derived from the region of rat brain circumventricular organs. Neuroscience 65:1145–1159.PubMedCrossRefGoogle Scholar
  51. Kanemaru K, Okubo Y, Hirose K, Iino M (2007) Regulation of neurite growth by spontaneous Ca2+. oscillations in astrocytes J Neurosci 27:8957–8966.PubMedCrossRefGoogle Scholar
  52. Kastritsis CH, Salm AK, McCarthy K (1992) Stimulation of the P2. Y purinergic receptor on type 1 astroglia results in inositol phosphate formation and calcium mobilization J Neurochem 58:1277–1284.PubMedCrossRefGoogle Scholar
  53. Kimelberg HK, Macvicar BA, Sontheimer H (2006) Anion channels in astrocytes: biophysics, pharmacology, and function. Glia 54:747–757.PubMedCrossRefGoogle Scholar
  54. Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon PG, Zorec R (2004) Properties of Ca2+. -dependent exocytosis in cultured astrocytes Glia 46:437–445.PubMedCrossRefGoogle Scholar
  55. Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K (1999) Neuron–glia signaling via α1 adrenoceptor-mediated Ca2+. release in Bergmann glial cells in situ J Neurosci 19:8401–8408.PubMedGoogle Scholar
  56. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683.PubMedCrossRefGoogle Scholar
  57. Li N, Sul JY, Haydon PG (2003) A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J Neurosci 23:10302–10310.PubMedGoogle Scholar
  58. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE, Meyer T (2005) STIM is a Ca2+. sensor essential for Ca2+ store depletion triggered Ca2+ influx Curr Biol 15:1235–1241.PubMedCrossRefGoogle Scholar
  59. Liu QY, Lai FA, Rousseau E, Jones RV, Meissner G (1989) Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum. Biophys J 55:415–424.PubMedCrossRefGoogle Scholar
  60. Lo KJ, Luk HN, Chin TY, Chueh SH (2002) Store depletion-induced calcium influx in rat cerebellar astrocytes. Br J Pharmacol 135:1383–1392.PubMedCrossRefGoogle Scholar
  61. Lohr C, Deitmer JW (1999) Dendritic calcium transients in the leech giant glial cell. Glia 26:109–118.PubMedCrossRefGoogle Scholar
  62. Lohr C, Heil JE, Deitmer JW (2005) Blockage of voltage-gated calcium signalling impairs migration of glial cells in vivo. Glia 50:198–211.PubMedCrossRefGoogle Scholar
  63. Lohr C, Deitmer JW (2006) Calcium signaling in invertebrate glial cells. Glia 54:642–649.PubMedCrossRefGoogle Scholar
  64. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397.PubMedCrossRefGoogle Scholar
  65. Matyash V, Filippov V, Mohrhagen K, Kettenmann H (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci 18:664–670.PubMedCrossRefGoogle Scholar
  66. Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+. and is modulated by Mg2+, adenine nucleotide, and calmodulin J Biol Chem 262:3065–3073.PubMedGoogle Scholar
  67. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870.PubMedCrossRefGoogle Scholar
  68. Metea MR, Newman EA (2006) Calcium signaling in specialized glial cells. Glia 54:650–655.PubMedCrossRefGoogle Scholar
  69. Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715.PubMedCrossRefGoogle Scholar
  70. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter dependent glutamate release from astrocytes. J Neurosci 24:2633–2642.PubMedCrossRefGoogle Scholar
  71. Morita M, Higuchi C, Moto T, Kozuka N, Susuki J, Itofusa R, Yamashita J, Kudo Y (2003) Dual regulation of calcium oscillation in astrocytes by growth factors and pro-inflammatory cytokines via the mitogen-activated protein kinase cascade. J Neurosci 23:10944–10952.PubMedGoogle Scholar
  72. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d. -serine Proc Natl Acad Sci USA 102:5606–5611.PubMedCrossRefGoogle Scholar
  73. Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256:1563–1566. PubMedCrossRefGoogle Scholar
  74. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199.PubMedCrossRefGoogle Scholar
  75. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771.PubMedCrossRefGoogle Scholar
  76. Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537.PubMedGoogle Scholar
  77. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847.PubMedCrossRefGoogle Scholar
  78. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21:2215–2223.PubMedGoogle Scholar
  79. Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666.PubMedGoogle Scholar
  80. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 25:5502–5510.PubMedCrossRefGoogle Scholar
  81. Nilsson M, Hansson E, Ronnback L (1991) Adrenergic and 5-HT2 receptors on the same astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+. responses in single cells in primary culture Brain Res Dev Brain Res 63:33–41.PubMedCrossRefGoogle Scholar
  82. Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+. transients in astrocytes Neuroscience 54:605–614.PubMedCrossRefGoogle Scholar
  83. Oheim M, Kirchhoff F, Stühmer W (2006) Calcium microdomains in regulated exocytosis. Cell Calcium 40:423–439.PubMedCrossRefGoogle Scholar
  84. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634.PubMedCrossRefGoogle Scholar
  85. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810.PubMedCrossRefGoogle Scholar
  86. Parekh AB (2000) Calcium signaling and acute pancreatitis: specific response to a promiscuous messenger. Proc Natl Acad Sci USA 97:12933–12934.PubMedCrossRefGoogle Scholar
  87. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747.PubMedCrossRefGoogle Scholar
  88. Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12:3897–3900.PubMedCrossRefGoogle Scholar
  89. Parri HR, Crunelli V (2003) The role of Ca2+. in the generation of spontaneous astrocytic Ca2+ oscillations Neuroscience 120:979–992.PubMedCrossRefGoogle Scholar
  90. Partiseti M, Le Deist F, Hivroz C, Fischer A, Korn H, Choquet D (1994) The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem 269:32327–32335.PubMedGoogle Scholar
  91. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116.PubMedCrossRefGoogle Scholar
  92. Pasti L, Pozzan T, Carmignoto G (1995) Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J Biol Chem 270:15203–15210.PubMedCrossRefGoogle Scholar
  93. Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484.PubMedGoogle Scholar
  94. Peakman MC, Hill SJ (1995) Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes. Br J Pharmacol 115:801–810.PubMedGoogle Scholar
  95. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773.PubMedCrossRefGoogle Scholar
  96. Perea G, Araque A (2005a) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203. Erratum in J Neurosci 25:3022.Google Scholar
  97. Perea G, Araque A (2005b) Glial calcium signaling and neuron–glia communication. Cell Calcium 38:375–382.CrossRefGoogle Scholar
  98. Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+. waves and spreading depression in the mouse neocortex J Neurosci 23:9888–9896.PubMedGoogle Scholar
  99. Porter JT, McCarthy KD (1995a) Adenosine receptors modulate [Ca2+. ]i in hippocampal astrocytes in situ J Neurochem 65:1515–1523.CrossRefGoogle Scholar
  100. Porter JT, McCarthy KD (1995b) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+. ]i Glia 13:101–112.CrossRefGoogle Scholar
  101. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233.PubMedCrossRefGoogle Scholar
  102. Putney JW Jr (2000) Presenilins, Alzheimer’s disease, and capacitative calcium entry. Neuron 27:411–412.PubMedCrossRefGoogle Scholar
  103. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+. channel function J Cell Biol 169:435–445.PubMedCrossRefGoogle Scholar
  104. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321.PubMedCrossRefGoogle Scholar
  105. Salm AK, McCarthy KD (1990) Norepinephrine-evoked calcium transients in cultured cerebral type 1 astroglia. Glia 3:529–538.PubMedCrossRefGoogle Scholar
  106. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725.PubMedCrossRefGoogle Scholar
  107. Scemes E, Dermietzel R, Spray DC (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24:65–73.PubMedCrossRefGoogle Scholar
  108. Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N. -methyl-d-aspartate receptors FASEB J 15:1270–1272.PubMedGoogle Scholar
  109. Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+. waves trigger responses in microglial cells in brain slices FASEB J 16:255–257.PubMedGoogle Scholar
  110. Seifert G, Weber M, Schramm J, Steinhauser C (2003) Changes in splice variant expression and subunit assembly of AMPA receptors during maturation of hippocampal astrocytes. Mol Cell Neurosci 22:248–258.PubMedCrossRefGoogle Scholar
  111. Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G (2003) Arachidonic acid in astrocytes blocks Ca2+. oscillations by inhibiting store-operated Ca2+ entry, and causes delayed Ca2+ influx Cell Calcium 33:283–292PubMedCrossRefGoogle Scholar
  112. Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382.PubMedCrossRefGoogle Scholar
  113. Shao Y, McCarthy KD (1995) Receptor-mediated calcium signals in astroglia: multiple receptors, common stores and all-or-nothing responses. Cell Calcium 17:187–196.PubMedCrossRefGoogle Scholar
  114. Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci USA 98:4148–4153.PubMedCrossRefGoogle Scholar
  115. Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+. -elevating muscarinic cholinergic and histaminergic receptors in situ J Neurochem 74:555–563.PubMedCrossRefGoogle Scholar
  116. Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:(41)10514–10523.PubMedCrossRefGoogle Scholar
  117. Shuttleworth TJ, Thompson JL (1999) Discriminating between capacitative and arachidonate-activated Ca2+. entry pathways in HEK293 cells J Biol Chem 274:31174–31178.PubMedCrossRefGoogle Scholar
  118. Simpson PB, Russell JT (1997) Role of sarcoplasmic/endoplasmic-reticulum Ca2+. -ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia Biochem J 325:239–247.PubMedGoogle Scholar
  119. Singaravelu K, Lohr C, Deitmer JW (2006) Regulation of store-operated calcium entry by calcium-independent phospholipase A2. in rat cerebellar astrocytes J Neurosci 26:9579–9592.PubMedCrossRefGoogle Scholar
  120. Sitsapesan R, McGarry SJ, Williams AJ (1995) Cyclic ADP-ribose, the ryanodine receptor and Ca2+. release Trends Pharmacol Sci 16:386–391.PubMedCrossRefGoogle Scholar
  121. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM (2003) Ca2+. -independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry J Biol Chem 278:11909–11915.PubMedCrossRefGoogle Scholar
  122. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120.PubMedCrossRefGoogle Scholar
  123. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orail and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665.PubMedCrossRefGoogle Scholar
  124. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2005) STIM1 has a plasma membrane role in the activation of store-operated Ca2+. channels Proc Natl Acad Sci USA 103:4040–4045.CrossRefGoogle Scholar
  125. Spät A (2006) Calcium microdomains and the fine control of cell function: an introduction. Cell Calcium 40:403–404.PubMedCrossRefGoogle Scholar
  126. Stiene-Martin A, Mattson MP, Hauser KF (1993) Opiates selectively increase intracellular calcium in developing type-1 astrocytes: role of calcium in morphine-induced morphologic differentiation. Brain Res Dev Brain Res 76:189–196.PubMedCrossRefGoogle Scholar
  127. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+. signaling J Neurosci 26:1378–1385.PubMedCrossRefGoogle Scholar
  128. Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446.PubMedCrossRefGoogle Scholar
  129. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267.PubMedCrossRefGoogle Scholar
  130. Verkhratsky A, Shmigol A (1996) Calcium-induced calcium release in neurones. Cell Calcium 19:1–14.PubMedCrossRefGoogle Scholar
  131. Verkhratsky A, Orkland RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141.PubMedGoogle Scholar
  132. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+. entry Science 312:1220–1223.PubMedCrossRefGoogle Scholar
  133. Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18.PubMedCrossRefGoogle Scholar
  134. Wang D, Martens JR, Posner P, Sumners C, Gelband CH (1996) Angiotensin II regulation of intracellular calcium in astroglia cultured from rat hypothalamus and brainstem. J Neurochem 67:996–1004.PubMedCrossRefGoogle Scholar
  135. Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+. signaling evoked by sensory stimulation in vivo Nat Neurosci 9:816–823.PubMedCrossRefGoogle Scholar
  136. Xu J, Peng H, Kang N, Zhao Z, Lin JHC, Stanton PK, Kang J (2007) Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem 282:24185–24197.PubMedCrossRefGoogle Scholar
  137. Yang KT, Chen WP, Chang WL, Su MJ, Tsai KL (2005) Arachidonic acid inhibits capacitative Ca2+. entry and activates non-capacitative Ca2+ entry in cultured astrocytes Biochem Biophys Res Commun 331:603–613.PubMedCrossRefGoogle Scholar
  138. Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19:10767–10777.PubMedGoogle Scholar
  139. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596.PubMedGoogle Scholar
  140. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229.PubMedCrossRefGoogle Scholar
  141. Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733.PubMedCrossRefGoogle Scholar
  142. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+. sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane Nature 437:902–905.PubMedCrossRefGoogle Scholar
  143. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50.PubMedCrossRefGoogle Scholar
  144. Zur Nieden R, Deitmer JW (2006) The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. Cereb Cortex 16:676–687.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joachim W. Deitmer
    • 1
  • Karthika Singaravelu
    • 1
  • Christian Lohr
  1. 1.Abteilung für Allgemeine ZoologieFB Biologie, TU KaiserslauternGermany

Personalised recommendations