Skip to main content

Regulation of potassium by glial cells in the centralnervous system

  • Chapter
  • First Online:
Book cover Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP4:

Aquaporin 4

CNS:

Central nervous system

Cx:

Connexins

DGC:

Dystrophin glycoprotein complex

IOS:

Intrinsic optic signal

KO:

Knockout

[K+]o :

Extracellular K+ concentration

Kir channel:

Inwardly rectifying K+ channel

Na+ pump:

Na+, K+-ATPase

References

  • Ahn AH, Kunkel LM (1995) Syntrophin binds to an alternatively spliced exon of dystrophin. J Cell Biol 128:363–371.

    PubMed  CAS  Google Scholar 

  • Amedee T, Robert A, Coles JA (1997) Potassium homeostasis and glial energy metabolism. Glia 21:46–55.

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111.

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174.

    PubMed  CAS  Google Scholar 

  • Barres BA, Koroshetz WJ, Chun LL, Corey DP (1990) Ion channel expression by white matter glia: the type-1 astrocyte. Neuron 5:527–544.

    PubMed  CAS  Google Scholar 

  • Bordey A, Sontheimer H (1998) Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 32:286–303.

    PubMed  CAS  Google Scholar 

  • Brew H, Gray P, Mobbs P, Attwell D (1986) Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering Nature 324:466–468.

    PubMed  CAS  Google Scholar 

  • Claudepierre T, Dalloz C, Mornet D, Matsumura K, Sahel J, Rendon A (2000a) Characterization of the intermolecular associations of the dystrophin-associated glycoprotein complex in retinal Müller glial cells. J Cell Sci 113 (Pt 19):3409–3417.

    Google Scholar 

  • Claudepierre T, Mornet D, Pannicke T, Forster V, Dalloz C, Bolanos F, Sahel J, Reichenbach A, Rendon A (2000b) Expression of Dp71 in Müller glial cells: a comparison with utrophin- and dystrophin-associated proteins. Invest Ophthalmol Vis Sci 41:294–304.

    CAS  Google Scholar 

  • Coles JA, Orkand RK, Yamate CL, Tsacopoulos M (1986) Free concentrations of Na, K, and Cl in the retina of the honeybee drone: stimulus-induced redistribution and homeostasis. Ann N Y Acad Sci 481:303–317.

    PubMed  CAS  Google Scholar 

  • Connors B, Dray A, Fox P, Hilmy M, Somjen G (1979) LSD‧s effect on neuron populations in visual cortex gauged by transient responses of extracellular potassium evoked by optical stimuli. Neurosci Lett 13:147–150.

    PubMed  CAS  Google Scholar 

  • Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve Science 216:1341–1343.

    PubMed  CAS  Google Scholar 

  • Connors NC, Kofuji P (2002) Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells. J Neurosci 22:4321–4327.

    PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus J Neurophysiol 87:87–102.

    PubMed  Google Scholar 

  • Dalloz C, Sarig R, Fort P, Yaffe D, Bordais A, Pannicke T, Grosche J, Mornet D, Reichenbach A, Sahel J, Nudel U, Rendon A (2003) Targeted inactivation of dystrophin gene product Dp71: phenotypic impact in mouse retina. Hum Mol Genet. 12:1543–1554.

    PubMed  CAS  Google Scholar 

  • Dennis MJ, Gerschenfeld HM (1969) Some physiological properties of identified mammalian neuroglial cells. J Physiol 203:211–222.

    PubMed  CAS  Google Scholar 

  • Dermietzel R (1998) Diversification of gap junction proteins (connexins) in the central nervous system and the concept of functional compartments. Cell Biol Int 22:719–730.

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56.

    PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432–439.

    PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Lux HD (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2:25–44.

    PubMed  CAS  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA (1995) The inward rectifier potassium channel family. Curr Opin Neurobiol 5:268–277.

    PubMed  CAS  Google Scholar 

  • Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403.

    PubMed  CAS  Google Scholar 

  • Franck G, Grisar T, Moonen G (1983) Glial and neuronal Na+. In: ,K+ pumpFedoroff S, Hertz L, eds), pp Advances in Neurobiology (Academic. New York: 139–159.

    Google Scholar 

  • Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina J Neurophysiol 67:1201–1212.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR, Nicholson C (1983) Changes of extracellular potassium activity induced by electric current through brain tissue in the rat. J Physiol 335:375–392.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR, Coles JA, Tsacopoulos M (1981) Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res 209:452–457.

    PubMed  CAS  Google Scholar 

  • Gnatenco C, Han J, Snyder AK, Kim D (2002) Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes Brain Res 931:56–67.

    PubMed  CAS  Google Scholar 

  • Gutnick MJ, Heinemann U, Lux HD (1979) Stimulus induced and seizure related changes in extracellular potassium concentration in cat thalamus (VPL). Electroencephalogr Clin Neurophysiol 47:329–344.

    PubMed  CAS  Google Scholar 

  • Haas M, Forbush B, III (1998) The Na-K-Cl cotransporters. J Bioenerg Biomembr 30:161–172.

    PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249.

    PubMed  CAS  Google Scholar 

  • Heinemann U, Schaible HG, Schmidt RF (1990) Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints. Exp Brain Res 79:283–292.

    PubMed  CAS  Google Scholar 

  • Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovacs R, Lehmann TN (2000) Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41:S185–S189.

    PubMed  Google Scholar 

  • Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain Am J Physiol Cell Physiol 281:C922–C931.

    PubMed  CAS  Google Scholar 

  • Hinterkeuser S, Schroder W, Hager G, Seifert G, Blumcke I, Elger CE, Schramm J, Steinhauser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096.

    PubMed  CAS  Google Scholar 

  • Holthoff K, Witte OW (2000) Directed spatial potassium redistribution in rat neocortex. Glia 29:288–292.

    PubMed  CAS  Google Scholar 

  • Horio Y, Hibino H, Inanobe A, Yamada M, Ishii M, Tada Y, Satoh E, Hata Y, Takai Y, Kurachi Y (1997) Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD-95/SAP90. J Bio Chem 272:12885–12888.

    CAS  Google Scholar 

  • Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702.

    PubMed  CAS  Google Scholar 

  • Iandiev I, Tenckhoff S, Pannicke T, Biedermann B, Hollborn M, Wiedemann P, Reichenbach A, Bringmann A (2006) Differential regulation of Kir4.1 and Kir2.1 expression in the ischemic rat retina. Neurosci Lett 396:97–101.

    PubMed  CAS  Google Scholar 

  • Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Müller cell membrane: their regulation by insulin and laminin signals. J Neurosci 17:7725–7735.

    PubMed  CAS  Google Scholar 

  • Ishii M, Fujita A, Iwai K, Kusaka S, Higashi K, Inanobe A, Hibino H, Kurachi Y (2003) Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina Am J Physiol Cell Physiol 285:C260–267.

    PubMed  CAS  Google Scholar 

  • Jorgensen PL, Hakansson KO, Karlish SJ (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol 65:817–849.

    PubMed  CAS  Google Scholar 

  • Kaiser M, Maletzki I, Hulsmann S, Holtmann B, Schulz-Schaeffer W, Kirchhoff F, Bahr M, Neusch C (2006) Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 99:900–912.

    PubMed  CAS  Google Scholar 

  • Kalsi AS, Greenwood K, Wilkin G, Butt AM (2004) Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat 204:475–485.

    PubMed  Google Scholar 

  • Kaplan JH (2002) Biochemistry of Na,K-ATPase. Annu Rev Biochem 71:511–535.

    PubMed  CAS  Google Scholar 

  • Karwoski CJ, Xu X (1999) Current source-density analysis of light-evoked field potentials in rabbit retina. Vis Neurosci 16:369–377.

    PubMed  CAS  Google Scholar 

  • Karwoski CJ, Newman EA, Shimazaki H, Proenza LM (1985) Light-evoked increases in extracellular K+ in the plexiform layers of amphibian retinas J Gen Physiol 86:189–213.

    PubMed  CAS  Google Scholar 

  • Karwoski CJ, Lu HK, Newman EA (1989) Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science 244:578–580.

    PubMed  CAS  Google Scholar 

  • Katzman R (1976) Maintenance of a constant brain extracellular potassium. Fed Proc 35:1244–1247.

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Frangakis MV (1985) Furosemide- and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res 361:125–134.

    PubMed  CAS  Google Scholar 

  • Kindler CH, Pietruck C, Yost CS, Sampson ER, Gray AT (2000) Localization of the tandem pore domain K+ channel TASK-1 in the rat central nervous system Brain Res Mol Brain Res 80:99–108.

    PubMed  CAS  Google Scholar 

  • Kofuji P, Connors NC (2003) Molecular substrates of potassium spatial buffering in glial cells. Mol Neurobiol 28:195–208.

    PubMed  CAS  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056.

    PubMed  CAS  Google Scholar 

  • Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740.

    PubMed  CAS  Google Scholar 

  • Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A, Reichenbach A (2002) Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia 39:292–303.

    PubMed  Google Scholar 

  • Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133.

    PubMed  CAS  Google Scholar 

  • Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55:274–281.

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787.

    PubMed  CAS  Google Scholar 

  • Kume-Kick J, Mazel T, Vorisek I, Hrabetova S, Tao L, Nicholson C (2002) Independence of extracellular tortuosity and volume fraction during osmotic challenge in rat neocortex. J Physiol 542:515–527.

    PubMed  CAS  Google Scholar 

  • Leonoudakis D, Mailliard W, Wingerd K, Clegg D, Vandenberg C (2001) Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J Cell Sci 114:987–998.

    PubMed  CAS  Google Scholar 

  • Li L, Head V, Timpe LC (2001) Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. Glia 33:57–71.

    PubMed  CAS  Google Scholar 

  • MacVicar BA, Feighan D, Brown A, Ransom B (2002) Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes. Glia 37:114–123.

    PubMed  Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758.

    PubMed  CAS  Google Scholar 

  • Metea MR, Kofuji P, Newman EA (2007) Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci 27:2468–2471.

    PubMed  CAS  Google Scholar 

  • Nagelhus E, Horio Y, Inanobe A, Fujita A, Haug F, Nielsen S, Kurachi Y, Ottersen O (1999) Immnunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by coenrichment of Kir4.1 and AQP4 in specific membrane domains Glia 26:47–54.

    PubMed  CAS  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32:29–44.

    PubMed  CAS  Google Scholar 

  • Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 98:14108–14113.

    PubMed  CAS  Google Scholar 

  • Neusch C, Papadopoulos N, Muller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bahr M, Richter DW, Kirchhoff F, Hulsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation J Neurophysiol 95:1843–1852.

    PubMed  CAS  Google Scholar 

  • Newman EA (1984) Regional specialization of retinal glial cell membrane. Nature 309:155–157.

    PubMed  CAS  Google Scholar 

  • Newman EA (1985) Membrane physiology of retinal glial (Müller) cells. J Neurosci 5:2225–2239.

    PubMed  CAS  Google Scholar 

  • Newman EA (1986) High potassium conductance in astrocyte endfeet. Science 233:453–454.

    PubMed  CAS  Google Scholar 

  • Newman EA (1987a) Regulation of potassium levels by Müller cells in the vertebrate retina. Can J Phys & Pharm 65:1028–1034.

    CAS  Google Scholar 

  • Newman EA (1987b) Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study. J Neurosci 7:2423–2432.

    CAS  Google Scholar 

  • Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 13:3333–3345.

    PubMed  CAS  Google Scholar 

  • Newman EA (1995) Glial cell regulation of extracellular potassium. In: Kettenmann H, Ransom B, eds), pp Neuroglia (Oxford University Press. New York: 717–731.

    Google Scholar 

  • Newman EA (1996a) Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport. J Neurosci 16:159–168.

    CAS  Google Scholar 

  • Newman EA (1996b) Regulation of extracellular K+ and pH by polarized ion fluxes in glial cells: the retinal Muller cell. The Neuroscientist 2:109–117.

    CAS  Google Scholar 

  • Newman EA, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19:307–312.

    PubMed  CAS  Google Scholar 

  • Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning Science 225:1174–1175.

    PubMed  CAS  Google Scholar 

  • Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191.

    PubMed  CAS  Google Scholar 

  • Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215.

    PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180.

    PubMed  CAS  Google Scholar 

  • Noel G, Belda M, Guadagno E, Micoud J, Klocker N, Moukhles H (2005) Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1. J Neurochem 94:691–702.

    PubMed  CAS  Google Scholar 

  • Oakley BI, Katz B, Xu Z, Zheng J (1992) Spatial buffering of extracellular potassium by Müller (glial) cells in the toad retina. Exp Eye Res 55:539–550.

    PubMed  CAS  Google Scholar 

  • Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H (2006) Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia 53:516–528.

    PubMed  CAS  Google Scholar 

  • Orkand RK (1986) Glial–interstitial fluid exchange. Ann N Y Acad Sci 481:269–272.

    PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806.

    PubMed  CAS  Google Scholar 

  • Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator Nature Methods 2:825–827.

    PubMed  CAS  Google Scholar 

  • Pannicke T, Iandiev I, Wurm A, Uckermann O, vom Hagen F, Reichenbach A, Wiedemann P, Hammes HP, Bringmann A (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639.

    PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels Trends Neurosci 24:339–346.

    PubMed  CAS  Google Scholar 

  • Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898.

    PubMed  CAS  Google Scholar 

  • Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly JO, Ghiani CA, Gallo V, Wilkin GP (2000) Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS Glia 30:362–372.

    PubMed  CAS  Google Scholar 

  • Ransom BR, Sontheimer H (1992) The neurophysiology of glial cells. J Clin Neurophysiol 9:224–251.

    PubMed  CAS  Google Scholar 

  • Ransom BR, Carlini WG, Connors BW (1986) Brain extracellular space: developmental studies in rat optic nerve. Ann N Y Acad Sci 481:87–105.

    PubMed  CAS  Google Scholar 

  • Ransom C, Sontheimer H, Janigro D (1996) Astrocytic inwardly rectifying potassium currents are dependent on external sodium ions. J Neurophys 76:626–630.

    CAS  Google Scholar 

  • Ransom CB, Sontheimer H (1995) Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. J Neurophysiol 73:333–346.

    PubMed  CAS  Google Scholar 

  • Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps J Physiol 522:427–442.

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Henke A, Eberhardt W, Reichelt W, Dettmer D (1992) K+ ion regulation in retina Can J Physiol Pharmacol 70:(Suppl)S239–247.

    PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (1996) Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and d-aspartate in rat hippocampal astrocytes J Neurosci 16:5393–5404.

    PubMed  CAS  Google Scholar 

  • Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475.

    PubMed  CAS  Google Scholar 

  • Rusznak Z, Pocsai K, Kovacs I, Por A, Pal B, Biro T, Szucs G (2004) Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum. Cell Mol Life Sci 61:1532–1542.

    PubMed  CAS  Google Scholar 

  • Schroder W, Seifert G, Huttmann K, Hinterkeuser S, Steinhauser C (2002) AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus Mol Cell Neurosci 19:447–458.

    PubMed  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29.

    PubMed  CAS  Google Scholar 

  • Singer W, Lux HD (1975) Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Res 96:378–383.

    PubMed  CAS  Google Scholar 

  • Skatchkov SN, Eaton MJ, Shuba YM, Kucheryavykh YV, Derst C, Veh RW, Wurm A, Iandiev I, Pannicke T, Bringmann A, Reichenbach A (2006) Tandem-pore domain potassium channels are functionally expressed in retinal (Muller) glial cells. Glia 53:266–276.

    PubMed  CAS  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177.

    PubMed  CAS  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096.

    PubMed  CAS  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8:254–267.

    PubMed  CAS  Google Scholar 

  • Sontheimer (1994) Voltage-dependent ion channels in glial cells. Glia 11:156–172.

    PubMed  CAS  Google Scholar 

  • Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0 Rev Physiol Biochem Pharmacol 145:47–179.

    PubMed  CAS  Google Scholar 

  • Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999) Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol 112:457–465.

    PubMed  CAS  Google Scholar 

  • Sweadner KJ (1995) Na,K-ATPase and its isoforms. In: Kettenmann H, Ransom BR, eds), pp Neuroglia (Oxford University Press. New York: 259–272.

    Google Scholar 

  • Tada Y, Horio Y, Kurachi Y (1998) Inwardly rectifying K+ channel in retinal Müller cells: comparison with the KAB-2/Kir4.1 channel expressed in HEK293T cells Jpn J Physiol 48:71–80.

    PubMed  CAS  Google Scholar 

  • Takumi T, Ishii T, Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyami H, Sohmiya K, Nakanishi S, Kurachi Y (1995) A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem 270:16339–16346.

    PubMed  CAS  Google Scholar 

  • Tucker SJ, Imbrici P, Salvatore L, D’Adamo MC, Pessia M (2000) pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J Biol Chem 275:16404–16407.

    PubMed  CAS  Google Scholar 

  • Vyskocil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259.

    PubMed  CAS  Google Scholar 

  • Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447.

    PubMed  CAS  Google Scholar 

  • Walz W (1992) Role of Na/K/Cl cotransport in astrocytes. Can J Physiol Pharmacol 70 (Suppl):S260–S262.

    Google Scholar 

  • Walz W (2002) Chloride/anion channels in glial cell membranes. Glia 40:1–10.

    PubMed  Google Scholar 

  • Xu X, Karwoski C (1997) The origin of slow PIII in frog retina: current source density analysis in the eyecup and isolated retina. Vis Neurosci 14:827–833.

    PubMed  CAS  Google Scholar 

  • Zahs KR, Kofuji P, Meier C, Dermietzel R (2003) Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol 455:531–546.

    PubMed  Google Scholar 

  • Zhou M, Schools GP, Kimelberg HK (2006) Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95:134–143.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kofuji, P., Newman, E. (2009). Regulation of potassium by glial cells in the centralnervous system. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_6

Download citation

Publish with us

Policies and ethics