Neurotransmitter Receptors in Astrocytes

  • Alexei Verkhratsky

Astrocytes are the most numerous glial cells. They fulfill a wide variety of vital functions, being in essence the wardens and governors of brain homeostasis. Astrocytes are integrated into a syncytium, being thus able to exchange molecules, and produce long-range signaling in a form of propagating Ca2+ waves. Astroglial cells are potentially capable to express virtually all types of neurotransmitter receptors known so far. These receptors can be activated by synaptically released neurotransmitters, by “glio” transmitters or by molecules diffusing in the brain extracellular space (volume transmitters). This chapter provides a concise summary of the properties of the main types of neurotransmitter receptors operative in astroglial cells.

3.1 Introduction

The nervous system is built by two cellular circuits represented by synaptically connected neuronal network and a complex web of glial cells (Retzius, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904...


NMDA Receptor GABAA Receptor P2X7 Receptor AMPA Receptor Neurotransmitter Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



IJ-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Adrenergic receptors


Adenosine 5′-triphosphate


Cyclic adenosine monophosphate


Acetylcholine receptor


Central nervous system


d-2-amino-phosphonopentanoic acid


Endoplasmic reticulum


γ-aminobutyric acid


Glutamate receptor






Muscarinic ChR


Metabotropic glutamate receptors


Nicotinic ChR




Phospholipase C


  1. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475.PubMedGoogle Scholar
  2. Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+. elevations in astrocytes in hippocampal slices J Neurosci 22:2443–2450.PubMedGoogle Scholar
  3. Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12:2333–2344.PubMedGoogle Scholar
  4. Ashur-Fabian O, Giladi E, Brenneman DE, Gozes I (1997) Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. J Mol Neurosci 9:211–222.PubMedGoogle Scholar
  5. Backus KH, Kettenmann H, Schachner M (1988) Effect of benzodiazepines and pentobarbital on the GABA-induced depolarization in cultured astrocytes. Glia 1:132–140.PubMedGoogle Scholar
  6. Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani P, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7. ) receptors regulate intracellular calcium and purine release Neuroreport 7:2533–2537.PubMedGoogle Scholar
  7. Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) Atomic force microscopy imaging demonstrates that P2X2. receptors are trimers but that P2X6 receptor subunits do not oligomerize J Biol Chem 280:10759–10765.PubMedGoogle Scholar
  8. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969.PubMedGoogle Scholar
  9. Bormann J, Kettenmann H (1988) Patch-clamp study of γ-aminobutyric acid receptor Cl−. channels in cultured astrocytes Proc Natl Acad Sci U S A 85:9336–9340.PubMedGoogle Scholar
  10. Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.PubMedGoogle Scholar
  11. Brand-Schieber E, Lowery SL, Werner P (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte–vessel interface. Brain Res 1007:178–182.PubMedGoogle Scholar
  12. Burnashev N (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24:325–332.PubMedGoogle Scholar
  13. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L, eds), pp Cell membrane receptors for drugs and hormones: A multidisciplinary approach. (Raven. New York: 107–118.Google Scholar
  14. Carson MJ, Thomas EA, Danielson PE, Sutcliffe JG (1996) The 5HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: a mechanism for neuronal suppression of reactive astrocytes. Glia 17:317–326.PubMedGoogle Scholar
  15. Catlin MC, Kavanagh TJ, Costa LG (2000) Muscarinic receptor-induced calcium responses in astroglia. Cytometry 41:123–132.PubMedGoogle Scholar
  16. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1β release from microglial cells through activation of ATP-primed P2X7. receptor channels J Neurosci 22:3061–3069.PubMedGoogle Scholar
  17. Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24:214–223.PubMedGoogle Scholar
  18. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7. receptor Neuropharmacology 36:1277–1283.PubMedGoogle Scholar
  19. Condorelli DF, Conti F, Gallo V, Kirchhoff F, Seifert G, Steinhauser C, Verkhratsky A, Yuan X (1999) Expression and functional analysis of glutamate receptors in glial cells. Adv Exp Med Biol 468:49–67.PubMedGoogle Scholar
  20. Conti F, DeBiasi S, Minelli A, Melone M (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17:254–258.PubMedGoogle Scholar
  21. Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844.PubMedGoogle Scholar
  22. Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877.PubMedGoogle Scholar
  23. Dermietzel R (1998) Gap junction wiring: a ‘new’ principle in cell-to-cell communication in the nervous system? Brain Res Brain Res Rev 26:176–183.Google Scholar
  24. Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16:186–192.PubMedGoogle Scholar
  25. Dixon SJ, Yu R, Panupinthu N, Wilson JX (2004) Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia 47:367–376.PubMedGoogle Scholar
  26. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7. receptor-mediated release of excitatory amino acids from astrocytes J Neurosci 23:1320–1328.PubMedGoogle Scholar
  27. Egan TM, Samways DS, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch 452:501–512.PubMedGoogle Scholar
  28. Enkvist MO, Holopainen I, Akerman KE (1989) Glutamate receptor-linked changes in membrane potential and intracellular Ca2+. in primary rat astrocytes Glia 2:397–402.PubMedGoogle Scholar
  29. Eriksson PS, Nilsson M, Wagberg M, Hansson E, Ronnback L (1993) κ-opioid receptors on astrocytes stimulate L-type Ca2+. channels Neuroscience 54:401–407.PubMedGoogle Scholar
  30. Fernandez-Agullo T (2001) Thyrotropin-releasing hormone and its receptor in glia. Glia 33:267–276.PubMedGoogle Scholar
  31. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504.PubMedGoogle Scholar
  32. Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633.PubMedGoogle Scholar
  33. Fiske CH, SubbaRow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382.PubMedGoogle Scholar
  34. Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429.PubMedGoogle Scholar
  35. Fraser DD, Mudrick-Donnon LA, MacVicar BA (1994) Astrocytic GABA receptors. Glia 11:83–93.PubMedGoogle Scholar
  36. Fukui H, Inagaki N, Ito S, Kubo A, Kondoh H, Yamatodani A, Wada H (1991) Histamine H1. -receptors on astrocytes in primary cultures: a possible target for histaminergic neurones Agents Actions Suppl 33:161–180.PubMedGoogle Scholar
  37. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia 43:218–203.PubMedGoogle Scholar
  38. Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258.PubMedGoogle Scholar
  39. Garcia-Barcina JM, Matute C (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Eur J Neurosci 8:2379–2387.PubMedGoogle Scholar
  40. Gebke E, Muller AR, Jurzak M, Gerstberger R (1998) Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs. Neuroscience 85:509–520.PubMedGoogle Scholar
  41. Gimpl G, Walz W, Ohlemeyer C, Kettenmann H (1992) Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neurosci Lett 144:139–142.PubMedGoogle Scholar
  42. Glaum SR, Holzwarth JA, Miller RJ (1990) Glutamate receptors activate Ca2+. mobilization and Ca2+ influx into astrocytes Proc Natl Acad Sci U S A 87:3454–3458.PubMedGoogle Scholar
  43. Golgi C (1903) Opera Omnia. Hoepli Editore. MilanoGoogle Scholar
  44. Griffith R, Sutin J (1996) Reactive astrocyte formation in vivo is regulated by noradrenergic axons. J Comp Neurol 371:362–375.PubMedGoogle Scholar
  45. Grimaldi M, Cavallaro S (1999) Functional and molecular diversity of PACAP/VIP receptors in cortical neurons and type I astrocytes. Eur J Neurosci 11:2767–2772.PubMedGoogle Scholar
  46. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528.PubMedGoogle Scholar
  47. Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261.PubMedGoogle Scholar
  48. Hatton GI (2004) Morphological plasticity of astroglial/neuronal interactions: functional implications In: Hatton GI, Parpura V, eds), pp Glial óneuronal signaling (Kluwer. Boston, MA: 365–395.Google Scholar
  49. Hauser KF, Stiene-Martin A, Mattson MP, Elde RP, Ryan SE, Godleske CC (1996) γ-opioid receptor-induced Ca2+. mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca2+-dependent mechanism Brain Res 720:191–203.PubMedGoogle Scholar
  50. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108.PubMedGoogle Scholar
  51. Illes P, Ribeiro JA (2004) Neuronal P2 receptors of the central nervous system. Curr Top Med Chem 4:831–838.PubMedGoogle Scholar
  52. Inagaki N, Fukui H, Taguchi Y, Wang NP, Yamatodani A, Wada H (1989) Characterization of histamine H1. -receptors on astrocytes in primary culture: [3H]mepyramine binding studies Eur J Pharmacol 173:43–51.PubMedGoogle Scholar
  53. Jabs R, Kirchhoff F, Kettenmann H, Steinhauser C (1994) Kainate activates Ca2+. -permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices Pflugers Arch 426:310–319.PubMedGoogle Scholar
  54. Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7. receptors stimulate AKT phosphorylation in astrocytes Br J Pharmacol 141:1106–1117.PubMedGoogle Scholar
  55. Jones IW, Wonnacott S (2004) Precise localization of IJ7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252.PubMedGoogle Scholar
  56. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692.PubMedGoogle Scholar
  57. Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166.PubMedGoogle Scholar
  58. Katz B, Miledi R (1967a) Ionic requirements of synaptic transmitter release. Nature 215:651.Google Scholar
  59. Katz B, Miledi R (1967b) The timing of calcium action during neuromuscular transmission. J Physiol 189:535–544.Google Scholar
  60. Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol 207:789–801.PubMedGoogle Scholar
  61. Kettenmann H (1990) Chloride channels and carriers in cultured glial cells. In: Alvarez-Leefmans FJ, Russel JM, Chloride channels and carriers in nerve, muscle, and glial cells (Plenum. New York: 193–208.Google Scholar
  62. Kettenmann H, Ransom BR (2005) Neuroglia. Oxford University Press. Oxford, UKGoogle Scholar
  63. Kettenmann H, Backus KH, Schachner M (1984a) Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52:25–29.Google Scholar
  64. Kettenmann H, Gilbert P, Schachner M (1984b) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neurosci Lett 47:271–276.Google Scholar
  65. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2. -receptor action in prefrontal cortex Proc Natl Acad Sci U S A 98:1964–1969.PubMedGoogle Scholar
  66. Kimelberg HK (1990) Chloride transport across glial membranes. In: Chloride channels and carriers in nerve, muscle, and glial cells (Alvarez-Leefmans FJ, Russel JM, eds), pp 159–191. NY: Plenum.Google Scholar
  67. Kirchhoff F, Mulhardt C, Pastor A, Becker CM, Kettenmann H (1996) Expression of glycine receptor subunits in glial cells of the rat spinal cord. J Neurochem 66:1383–1390.PubMedGoogle Scholar
  68. Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995a) Activation of P2. -purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes J Physiol Lond 483:41–57.Google Scholar
  69. Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995b) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871.Google Scholar
  70. Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signalling in mouse Bergmann glial cells mediated by IJ1. -adrenoreceptors and H1 histamine receptors Eur J Neurosci 8:1198–1208.PubMedGoogle Scholar
  71. Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A (1999) Glutamate-triggered calcium signalling in mouse Bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92:1051–1059.PubMedGoogle Scholar
  72. Kondoh T, Nishizaki T, Aihara H, Tamaki N (2001) NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. Life Sci 68:1761–1767.PubMedGoogle Scholar
  73. Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21.PubMedGoogle Scholar
  74. Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K (1999) Neuron–glia signaling via IJ1. adrenoceptor-mediated Ca2+ release in Bergmann glial cells in situ J Neurosci 19:8401–8408.PubMedGoogle Scholar
  75. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683.PubMedGoogle Scholar
  76. Lerea LS, McCarthy KD (1989) Astroglial cells in vitro are heterogeneous with respect to expression of the IJ1. -adrenergic receptor Glia 2:135–147.PubMedGoogle Scholar
  77. Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481–495.PubMedGoogle Scholar
  78. Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27:329–336.PubMedGoogle Scholar
  79. Lohmann K (1929) Uber die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625.Google Scholar
  80. Lopez T, Lopez-Colome AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405:245–248.PubMedGoogle Scholar
  81. MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl−. channels in astrocytes of hippocampal slices J Neurosci 9:3577–3583.PubMedGoogle Scholar
  82. Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527.PubMedGoogle Scholar
  83. Maxishima M, Shiga T, Shutoh F, Hamada S, Maeshima T, Okado N (2001) Serotonin 2A receptor-like immunoreactivity is detected in astrocytes but not in oligodendrocytes of rat spinal cord. Brain Res 889:270–273.PubMedGoogle Scholar
  84. Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15:282–288.PubMedGoogle Scholar
  85. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181.PubMedGoogle Scholar
  86. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+. of NMDA responses in spinal cord neurones Nature 309:261–263.PubMedGoogle Scholar
  87. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992.PubMedGoogle Scholar
  88. Milner TA, Lee A, Aicher SA, Rosin DL (1998) Hippocampal IJ2a. -adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes J Comp Neurol 395:310–327.PubMedGoogle Scholar
  89. Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D (2002) Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-β and membrane components. Glia 37:169–177.PubMedGoogle Scholar
  90. Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59.PubMedGoogle Scholar
  91. Montiel-Herrera M, Miledi R, Garcia-Colunga J (2006) Membrane currents elicited by angiotensin II in astrocytes from the rat corpus callosum. Glia 53:366–371.PubMedGoogle Scholar
  92. Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256:1563–1566.PubMedGoogle Scholar
  93. Muller T, Grosche J, Ohlemeyer C, Kettenmann H (1993) NMDA-activated currents in Bergmann glial cells. Neuroreport 4:671–674.PubMedGoogle Scholar
  94. Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K+. channel and GABAA receptor expression in Bergmann glial cells J Neurosci 14:2503–2514.PubMedGoogle Scholar
  95. Muscella A, Aloisi F, Marsigliante S, Levi G (2000) Angiotensin II modulates the activity of Na+. ,K+-ATPase in cultured rat astrocytes via the AT1 receptor and protein kinase C-δactivation J Neurochem 74:1325–1331.PubMedGoogle Scholar
  96. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13:1031–1037.PubMedGoogle Scholar
  97. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530.PubMedGoogle Scholar
  98. Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+. transients in astrocytes Neuroscience 54:605–614.PubMedGoogle Scholar
  99. Nishizaki T, Matsuoka T, Nomura T, Kondoh T, Tamaki N, Okada Y (1999) Store Ca2+. depletion enhances NMDA responses in cultured human astrocytes Biochem Biophys Res Commun 259:661–664.PubMedGoogle Scholar
  100. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067.PubMedGoogle Scholar
  101. North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485.PubMedGoogle Scholar
  102. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.PubMedGoogle Scholar
  103. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553.PubMedGoogle Scholar
  104. Oertel J, Villmann C, Kettenmann H, Kirchhoff F, Becker CM (2007) A novel glycine receptor β-subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. J Biol Chem 282:2798–2807.Google Scholar
  105. Olah Z, Lehel C, Anderson WB, Brenneman DE, van Agoston D (1994) Subnanomolar concentration of VIP induces the nuclear translocation of protein kinase C in neonatal rat cortical astrocytes. J Neurosci Res 39:355–363.PubMedGoogle Scholar
  106. Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, MacVicar BA (2001) P2X7. -like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase J Neurosci 21:7135–7142.PubMedGoogle Scholar
  107. Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536.PubMedGoogle Scholar
  108. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116.PubMedGoogle Scholar
  109. Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7:1188–1198.PubMedGoogle Scholar
  110. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976.PubMedGoogle Scholar
  111. Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303.PubMedGoogle Scholar
  112. Porter JT, McCarthy KD (1995a) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+. ]i Glia 13:101–112.Google Scholar
  113. Porter JT, McCarthy KD (1995b) Adenosine receptors modulate [Ca2+. ]i in hippocampal astrocytes in situ J Neurochem 65:1515–1523.Google Scholar
  114. Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455.PubMedGoogle Scholar
  115. Puro DG, Yuan JP, Sucher NJ (1996) Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 13:319–326.PubMedGoogle Scholar
  116. Ramon y Cajal S (1909) Histologie du systeme nerveux de l’homme et des vertebres. Paris: Maloine.Google Scholar
  117. Retzius GM (1890–1916) Biologische Untersuchungen. Stockholm: Samson and Wallin.Google Scholar
  118. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500.PubMedGoogle Scholar
  119. Roy ML, Sontheimer H (1995) β-adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem 64:1576–1584.PubMedGoogle Scholar
  120. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171.PubMedGoogle Scholar
  121. Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N. -methyl-d-aspartate receptors Faseb J 15:1270–1272.PubMedGoogle Scholar
  122. Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26:217–229.PubMedGoogle Scholar
  123. Seifert G, Steinhauser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299.PubMedGoogle Scholar
  124. Shao Y, McCarthy KD (1993) Quantitative relationship between IJ1-adrenergic receptor density and the receptor-mediated calcium response in individual astroglial cells. Mol Pharmacol 44:247–254.PubMedGoogle Scholar
  125. Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98:4148–4153.PubMedGoogle Scholar
  126. Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+. -elevating muscarinic cholinergic and histaminergic receptors in situ J Neurochem 74:555–563.PubMedGoogle Scholar
  127. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia–neuron ratios in the human frontal cortex. Proc Natl Acad Sci U S A 103:13606–13611.PubMedGoogle Scholar
  128. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7. receptors in the nervous system Prog Neurobiol 78:327–346.PubMedGoogle Scholar
  129. Steinhäuser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19:339–345.PubMedGoogle Scholar
  130. Steinhäuser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35.PubMedGoogle Scholar
  131. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7. receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling J Neurosci 26:1378–1385.PubMedGoogle Scholar
  132. Sumners C, Tang W, Paulding W, Raizada MK (1994) Peptide receptors in astroglia: focus on angiotensin II and atrial natriuretic peptide. Glia 11:110–116.PubMedGoogle Scholar
  133. Sun SH, Lin LB, Hung AC, Kuo JS (1999) ATP-stimulated Ca2+. influx and phospholipase D activities of a rat brain-derived type-2 astrocyte cell line, RBA-2, are mediated through P2X7 receptors J Neurochem 73:334–343.PubMedGoogle Scholar
  134. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor P2X7. Science 272:735–738.PubMedGoogle Scholar
  135. Sutin J, Griffith R (1993) β-adrenergic receptor blockade suppresses glial scar formation. Exp Neurol 120:214–222.PubMedGoogle Scholar
  136. Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106:481–503.PubMedGoogle Scholar
  137. Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, Hall R, Perry E (2003) Alzheimer’s disease is associated with a selective increase in IJ7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211.PubMedGoogle Scholar
  138. Teaktong T, Graham AJ, Johnson M, Court JA, Perry EK (2004a) Selective changes in nicotinic acetylcholine receptor subtypes related to tobacco smoking: an immunohistochemical study. Neuropathol Appl Neurobiol 30:243–254.Google Scholar
  139. Teaktong T, Graham AJ, Court JA, Perry RH, Jaros E, Johnson M, Hall R, Perry EK (2004b) Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 225:39–49.Google Scholar
  140. Verkhratsky A (2006a) Patching the glia reveals the functional organisation of the brain. Pflugers Arch 453:411–420.Google Scholar
  141. Verkhratsky A (2006b) Calcium ions and integration in neural circuits. Acta Physiol (Oxf) 187:357–369.Google Scholar
  142. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352.PubMedGoogle Scholar
  143. Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412.PubMedGoogle Scholar
  144. Verkhratsky A, Toescu EC (2006) Neuronal–glial networks as substrate for CNS integration. J Cell Mol Med 10:826–836.PubMedGoogle Scholar
  145. Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:1–10.Google Scholar
  146. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141.PubMedGoogle Scholar
  147. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640.PubMedGoogle Scholar
  148. von Blankenfeld G, Kettenmann H (1991) Glutamate and GABA receptors in vertebrate glial cells. Mol Neurobiol 5:31–43.PubMedGoogle Scholar
  149. Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18.PubMedGoogle Scholar
  150. Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3:291–298.PubMedGoogle Scholar
  151. Xiu J, Nordberg A, Zhang JT, Guan ZZ (2005) Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the IJ7, IJ4 and β2 subunits in response to nanomolar concentrations of the β-amyloid peptide(1–42). Neurochem Int 47:281–290.PubMedGoogle Scholar
  152. Xu T, Pandey SC (2000) Cellular localization of serotonin2A. (5HT2A) receptors in the rat brain Brain Res Bull 51:499–505.PubMedGoogle Scholar
  153. Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of IJ7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225.PubMedGoogle Scholar
  154. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982.PubMedGoogle Scholar
  155. Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47:365–375.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alexei Verkhratsky

There are no affiliations available

Personalised recommendations