Skip to main content

Role of Astrocytes in Epilepsy

Keywords

  • Temporal Lobe Epilepsy
  • Tuberous Sclerosis
  • Glutamate Transporter
  • Epileptiform Activity
  • Hippocampal Sclerosis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-79492-1_25
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-79492-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.00
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Abbreviations

AED:

Antiepileptic drug

AMPA:

α-Amino-3-hydroxy-5-methyl-isoxazole propionate

AQPs:

Aquaporins

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

ECS:

Extracellular space

GABA:

Gamma-amino butyric acid

GFAP:

Glial fibrillary acidic protein

IL:

Interleukin

mGluR:

Metabotropic glutamate receptor

MTS:

Mesial temporal sclerosis

TLE:

Temporal lobe epilepsy

TS:

Tuberous sclerosis

References

  • Abbott NJ (2002) Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638.

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001.

    PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, Lanerolle NC, de Nagelhus EA, Adams ME, Froehner SC, Agre P, Ottersen OP (2003a) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of á-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620.

    CAS  Google Scholar 

  • Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003b) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111.

    CAS  Google Scholar 

  • Andrew RD, Fagan M, Ballyk BA, Rosen AS (1989) Seizure susceptibility and the osmotic state. Brain Res 498:175–180.

    PubMed  CAS  Google Scholar 

  • Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24.

    PubMed  CAS  Google Scholar 

  • Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Ramkema M, Troost D (2003a) Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in taylor-type focal cortical dysplasia. Epilepsia 44:785–795.

    CAS  Google Scholar 

  • Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D (2003b) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17:2106–2118.

    Google Scholar 

  • Au KS, Williams AT, Gambello MJ, Northrup H (2004) Molecular genetic basis of tuberous sclerosis complex: from bench to bedside. J Child Neurol 19:699–709.

    PubMed  Google Scholar 

  • Ballanyi K, Grafe P, Bruggencate G ten (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174.

    PubMed  CAS  Google Scholar 

  • Barger SW, Eldik LJ Van (1992) S100 beta stimulates calcium fluxes in glial and neuronal cells. J Biol Chem 267:9689–9694.

    PubMed  CAS  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191.

    PubMed  CAS  Google Scholar 

  • Berkovic SF, Jackson GD (2000) The hippocampal sclerosis whodunit: enter the genes. Ann Neurol 47:557–558.

    PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, Clercq E, De Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710.

    PubMed  CAS  Google Scholar 

  • Bianchi L, Micheli E, De Bricolo A, Ballini C, Fattori M, Venturi C, Pedata F, Tipton KF, Della Corte L (2004) Extracellular levels of amino acids and choline in human high grade gliomas: an intraoperative microdialysis study. Neurochem Res 29:325–334.

    PubMed  CAS  Google Scholar 

  • Binder DK, Yao X, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636.

    PubMed  Google Scholar 

  • Blümcke I, Beck H, Lie AA, Wiestler OD (1999) Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res 36:205–223.

    PubMed  Google Scholar 

  • Blümcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211.

    PubMed  Google Scholar 

  • Bordey A, Sontheimer H (1998a) Electrophysiological properties of human astrocytic tumor cells in situ: enigma of spiking glial cells. J Neurophysiol 79:2782–2793.

    CAS  Google Scholar 

  • Bordey A, Sontheimer H (1998b) Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 32:286–303.

    CAS  Google Scholar 

  • Bordey A, Hablitz JJ, Sontheimer H (2000) Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ. Neuroreport 11:3151–3155.

    PubMed  CAS  Google Scholar 

  • Bordey A, Lyons SA, Hablitz JJ, Sontheimer H (2001) Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 85:1719–1731.

    PubMed  CAS  Google Scholar 

  • Bratz E (1899) Ammonshornbefunde bei Epileptikern. Arch Psychiatr Nervenkr 32:820–835.

    Google Scholar 

  • Briellmann RS, Kalnins RM, Berkovic SF, Jackson GD (2002) Hippocampal pathology in refractory temporal lobe epilepsy: T2-weighted signal change reflects dentate gliosis. Neurology 58:265–271.

    PubMed  Google Scholar 

  • Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677–1680.

    PubMed  CAS  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, Noort JM van (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021.

    PubMed  CAS  Google Scholar 

  • Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44.

    PubMed  CAS  Google Scholar 

  • Campbell SL, Hablitz JJ (2004) Glutamate transporters regulate excitability in local networks in rat neocortex. Neuroscience 127:625–635.

    PubMed  CAS  Google Scholar 

  • Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374.

    PubMed  Google Scholar 

  • Caveness WF, Meirowsky AM, Rish BL, Mohr JP, Kistler JP, Dillon JD, Weiss GH (1979) The nature of posttraumatic epilepsy. J Neurosurg 50:545–553.

    PubMed  CAS  Google Scholar 

  • Chebabo SR, Hester MA, Aitken PG, Somjen GG (1995) Hypotonic exposure enhances synaptic transmission and triggers spreading depression in rat hippocampal tissue slices. Brain Res 695:203–216.

    PubMed  CAS  Google Scholar 

  • Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 279:28387–28392.

    PubMed  CAS  Google Scholar 

  • Crespel A, Coubes P, Rousset MC, Brana C, Rougier A, Rondouin G, Bockaert J, Baldy-Moulinier M, Lerner-Natoli M (2002) Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res 952:159–169.

    PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Perucca E (2004) Epilepsy after head injury. Curr Opin Neurol 17:731–735.

    PubMed  Google Scholar 

  • D’Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D (1999) Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19:8152–8162.

    PubMed  Google Scholar 

  • D’Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW (2004) Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127:304–314.

    PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105.

    PubMed  CAS  Google Scholar 

  • Lanerolle NC, de Lee TS (2005) New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 7:190–203.

    PubMed  Google Scholar 

  • Lanerolle NC, de Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687.

    PubMed  Google Scholar 

  • Demarque M, Villeneuve N, Manent JB, Becq H, Represa A, Ben-Ari Y, Aniksztejn L (2004) Glutamate transporters prevent the generation of seizures in the developing rat neocortex. J Neurosci 24:3289–3294.

    PubMed  CAS  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190.

    PubMed  CAS  Google Scholar 

  • Dube C, Vezzani A, Behrens M, Bartfai T, Baram TZ (2005) Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol 57:152–155.

    PubMed  CAS  Google Scholar 

  • Dudek FE, Obenhaus A, Tasker JG (1990) Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis. Neurosci Lett 120:267–270.

    PubMed  CAS  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610.

    PubMed  CAS  Google Scholar 

  • Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, Lanerolle NC de (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37.

    PubMed  CAS  Google Scholar 

  • Eid T, Lee TS, Thomas MJ, Amiry-Moghaddam M, Bjornsen LP, Spencer DD, Agre P, Ottersen OP, Lanerolle NC de (2005) Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci USA 102:1193–1198.

    PubMed  CAS  Google Scholar 

  • Ettinger AB (1994) Structural causes of epilepsy. Neurol Clin 12:41–56.

    PubMed  CAS  Google Scholar 

  • Falconer MA (1974) Mesial temporal (Ammon’s horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. Lancet 2:767–770.

    PubMed  CAS  Google Scholar 

  • Fellin T, Gomez-Gonzalo M, Gobbo S, Carmignoto G, Haydon PG (2006) Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 26:9312–9322.

    PubMed  CAS  Google Scholar 

  • Feng Z, Durand DM (2006) Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity. Epilepsia 47:727–736.

    PubMed  CAS  Google Scholar 

  • Frey LC (2003) Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia 44 Suppl 10:11–17.

    PubMed  Google Scholar 

  • Frigeri A, Nicchia GP, Nico B, Quondamatteo F, Herken R, Roncali L, Svelto M (2001) Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15:90–98.

    PubMed  CAS  Google Scholar 

  • Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ER, Eilers A, Kivi A, Zeller M, Meencke HJ, Cavalheiro EA, Heinemann U, Lehmann TN (2004) Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 24:10416–10430.

    PubMed  CAS  Google Scholar 

  • Garga N, Lowenstein DH (2006) Posttraumatic epilepsy: a major problem in desperate need of major advances. Epilepsy Curr 6:1–5.

    PubMed  Google Scholar 

  • Glass M, Dragunow M (1995) Neurochemical and morphological changes associated with human epilepsy. Brain Res Brain Res Rev 21:29–41.

    PubMed  CAS  Google Scholar 

  • Golarai G, Greenwood AC, Feeney DM, Connor JA (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21:8523–8537.

    PubMed  CAS  Google Scholar 

  • Haglund MM, Hochman DW (2005) Furosemide and mannitol suppression of epileptic activity in the human brain. J Neurophysiol 94:907–918.

    PubMed  CAS  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63.

    PubMed  CAS  Google Scholar 

  • Haspolat S, Mihci E, Coskun M, Gumuslu S, Ozben T, Yegin O (2002) Interleukin-1beta, tumor necrosis factor-alpha, and nitrite levels in febrile seizures. J Child Neurol 17:749–751.

    PubMed  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249.

    PubMed  CAS  Google Scholar 

  • Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovacs R, Lehmann TN (2000) Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41 Suppl 6:S185–S189.

    PubMed  Google Scholar 

  • Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004) Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279:44065–44073.

    PubMed  CAS  Google Scholar 

  • Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 281:C922–C931.

    PubMed  CAS  Google Scholar 

  • Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger CE, Schramm J, Steinhäuser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096.

    PubMed  CAS  Google Scholar 

  • Holthoff K, Witte OW (2000) Directed spatial potassium redistribution in rat neocortex. Glia 29:288–292.

    PubMed  CAS  Google Scholar 

  • Hüttmann K, Sadgrove M, Wallraff A, Hinterkeuser S, Kirchhoff F, Steinhäuser C, Gray WP (2003) Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur J Neurosci 18:2769–2778.

    PubMed  Google Scholar 

  • Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–547.

    PubMed  Google Scholar 

  • Jabs R, Pivneva T, Hüttmann K, Wyczynski A, Nolte C, Kettenmann H, Steinhäuser C (2005) Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci 118:3791–3803.

    PubMed  CAS  Google Scholar 

  • Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M (2005) Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46:1871–1880.

    PubMed  CAS  Google Scholar 

  • John GR, Lee SC, Song X, Rivieccio M, Brosnan CF (2005) IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 49:161–176.

    PubMed  Google Scholar 

  • Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M (2000) Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 47:571–574.

    PubMed  CAS  Google Scholar 

  • Kang N, Xu J, Xu Q, Nedergaard M, Kang J (2005) Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 94:4121–4130.

    PubMed  CAS  Google Scholar 

  • Kim JH (2001) Pathology of epilepsy. Exp Mol Pathol 70:345–367.

    PubMed  CAS  Google Scholar 

  • Kivi A, Lehmann TN, Kovacs R, Eilers A, Jauch R, Meencke HJ, Deimling A, von Heinemann U, Gabriel S (2000) Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci 12:2039–2048.

    PubMed  CAS  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056.

    PubMed  CAS  Google Scholar 

  • Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740.

    PubMed  CAS  Google Scholar 

  • Köller H, Schroeter M, Jander S, Stoll G, Siebler M (2000) Time course of inwardly rectifying K+ current reduction in glial cells surrounding ischemic brain lesions. Brain Res 872:194–198.

    PubMed  Google Scholar 

  • Krishnan B, Armstrong DL, Grossman RG, Zhu ZQ, Rutecki PA, Mizrahi EM (1994) Glial cell nuclear hypertrophy in complex partial seizures. J Neuropathol Exp Neurol 53:502–507.

    PubMed  CAS  Google Scholar 

  • Lee TS, Eid T, Mane S, Kim JH, Spencer DD, Ottersen OP, Lanerolle NC de (2004) Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol 108:493–502.

    PubMed  CAS  Google Scholar 

  • Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237.

    PubMed  CAS  Google Scholar 

  • Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Müller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573–579.

    PubMed  Google Scholar 

  • Lin SC, Bergles DE (2004) Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7:24–32.

    PubMed  CAS  Google Scholar 

  • Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853.

    PubMed  CAS  Google Scholar 

  • Luyken C, Blumcke I, Fimmers R, Urbach H, Elger CE, Wiestler OD, Schramm J (2003) The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44:822–830.

    PubMed  Google Scholar 

  • Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA 98:14687–14692.

    PubMed  CAS  Google Scholar 

  • MacFarlane SN, Sontheimer H (1997) Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci 17:7316–7329.

    PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163.

    PubMed  CAS  Google Scholar 

  • Manley GT, Binder DK, Papadopoulos MC, Verkman AS (2004) New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129:983–991.

    PubMed  CAS  Google Scholar 

  • Manning TJ Jr, Sontheimer H (1997) Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen’s encephalitis). Glia 21:332–337.

    PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407.

    PubMed  CAS  Google Scholar 

  • Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499–530.

    PubMed  CAS  Google Scholar 

  • Mathern GW, Babb TL, Armstrong DL (1997) Hippocampal sclerosis. In: Engel J, Pedley TA, eds), Epilepsy: a comprehensive textbook (Lippincott, Williams & Wilkins. Philadelphia: pp 133–155.

    Google Scholar 

  • Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472.

    PubMed  CAS  Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Hüttmann K, Matyash M, Kettenmann H, Steinhäuser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758.

    PubMed  CAS  Google Scholar 

  • May MJ, Ghosh S (1998) Signal transduction through NF-kappa B. Immunol Today 19:80–88.

    PubMed  CAS  Google Scholar 

  • Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870.

    PubMed  CAS  Google Scholar 

  • Mitchell LA, Jackson GD, Kalnins RM, Saling MM, Fitt GJ, Ashpole RD, Berkovic SF (1999) Anterior temporal abnormality in temporal lobe epilepsy: a quantitative MRI and histopathologic study. Neurology 52:327–336.

    PubMed  CAS  Google Scholar 

  • Moldrich RX, Aprico K, Diwakarla S, O’Shea RD, Beart PM (2002) Astrocyte mGlu(2/3)-mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures. Neuropharmacology 43:189–203.

    PubMed  CAS  Google Scholar 

  • Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266:1059–1062.

    PubMed  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199.

    PubMed  CAS  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neuroscience 129:905–913.

    PubMed  CAS  Google Scholar 

  • Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98:14108–14113.

    PubMed  CAS  Google Scholar 

  • Nemani VM, Binder DK (2005) Emerging role of gap junctions in epilepsy. Histol Histopathol 20:253–259.

    PubMed  CAS  Google Scholar 

  • Neusch C, Weishaupt JH, Bahr M (2003) Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res 311:131–138.

    PubMed  CAS  Google Scholar 

  • Neusch C, Papadopoulos N, Muller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bahr M, Richter DW, Kirchhoff F, Hülsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95:1843–1852.

    PubMed  CAS  Google Scholar 

  • Newman EA (1986) High potassium conductance in astrocyte endfeet. Science 233:453–454.

    PubMed  CAS  Google Scholar 

  • Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 13:3333–3345.

    PubMed  CAS  Google Scholar 

  • Newman EA, Karwoski CJ (1989) Spatial buffering of light-evoked potassium increases by retinal glial (Müller) cells. Acta Physiol Scand Suppl 582:51.

    PubMed  CAS  Google Scholar 

  • Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225:1174–1175.

    PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180.

    PubMed  CAS  Google Scholar 

  • Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051.

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Yang Z, Butt A (2005) Astrocytes and NG2-glia: what’s in a name? J Anat 207:687–693.

    PubMed  Google Scholar 

  • Notenboom RG, Hampson DR, Jansen GH, Rijen PC, van Veelen CW, van Nieuwenhuizen O, van Graan PN de (2006) Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain 129:96–107.

    PubMed  Google Scholar 

  • Olsen ML, Sontheimer H (2004) Mislocalization of Kir channels in malignant glia. Glia 46:63–73.

    PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806.

    PubMed  CAS  Google Scholar 

  • Ounsted C, Glaser GH, Lindsay J, Richards P (1985) Focal epilepsy with mesial temporal sclerosis after acute meningitis. Arch Neurol 42:1058–1060.

    PubMed  CAS  Google Scholar 

  • Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nature Methods 2:825–827.

    PubMed  CAS  Google Scholar 

  • Pan E, Stringer JL (1996) Influence of osmolality on seizure amplitude and propagation in the rat dentate gyrus. Neurosci Lett 207:9–12.

    PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293.

    PubMed  CAS  Google Scholar 

  • Parent JM, Bussche N, von dem Lowenstein DH (2006) Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16:321–328.

    PubMed  CAS  Google Scholar 

  • Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710.

    PubMed  CAS  Google Scholar 

  • Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, Veelen CW, van Rijen PC, van Nieuwenhuizen O, van Gispen WH, Graan PN de (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43.

    PubMed  CAS  Google Scholar 

  • Ransom BR (1996) Do glial gap junctions play a role in extracellular ion homeostasis? In: Dermietzel R, Spray DC, eds), Gap junctions in the nervous system (Landes Bioscience. Georgetown, TX: pp 159–173.

    Google Scholar 

  • Rasmussen T (1975) Surgery of epilepsy associated with brain tumors. Adv Neurol 8:227–239.

    PubMed  CAS  Google Scholar 

  • Ravizza T, Vezzani A (2006) Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137:301–308.

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–564.

    PubMed  CAS  Google Scholar 

  • Roper SN, Obenhaus A, Dudek FE (1992) Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann Neurol 31:81–85.

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77.

    PubMed  CAS  Google Scholar 

  • Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177:71–80.

    PubMed  CAS  Google Scholar 

  • Rutecki PA, Lebeda FJ, Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol 54:1363–1374.

    PubMed  CAS  Google Scholar 

  • Samuelsson C, Kumlien E, Flink R, Lindholm D, Ronne-Engstrom E (2000) Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci Lett 289:185–188.

    PubMed  CAS  Google Scholar 

  • Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708–717.

    PubMed  CAS  Google Scholar 

  • Schröder W, Hager G, Kouprijanova E, Weber M, Schmitt AB, Seifert G, Steinhäuser C (1999) Lesion-induced changes of electrophysiological properties in astrocytes of the rat dentate gyrus. Glia 28:166–174.

    PubMed  Google Scholar 

  • Schröder W, Hinterkeuser S, Seifert G, Schramm J, Jabs R, Wilkin GP, Steinhäuser C (2000) Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 41 Suppl 6:S181–S184.

    PubMed  Google Scholar 

  • Schröder W, Seifert G, Hüttmann K, Hinterkeuser S, Steinhäuser C (2002) AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol Cell Neurosci 19:447–458.

    PubMed  Google Scholar 

  • Schwartzkroin PA, Baraban SC, Hochman DW (1998) Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res 32:275–285.

    PubMed  CAS  Google Scholar 

  • Seifert G, Rehn L, Weber M, Steinhäuser C (1997) AMPA receptor subunits expressed by single astrocytes in the juvenile mouse hippocampus. Mol Brain Res 47:286–294.

    PubMed  CAS  Google Scholar 

  • Seifert G, Schröder W, Hinterkeuser S, Schumacher T, Schramm J, Steinhäuser C (2002) Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy. Epilepsia 43 Suppl 5:162–167.

    PubMed  CAS  Google Scholar 

  • Seifert G, Hüttmann K, Schramm J, Steinhäuser C (2004) Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon’s horn sclerosis. J Neurosci 24:1996–2003.

    PubMed  CAS  Google Scholar 

  • Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206.

    PubMed  CAS  Google Scholar 

  • Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A (2004) Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24:7829–7836.

    PubMed  CAS  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896.

    PubMed  CAS  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262.

    PubMed  CAS  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8:254–267.

    PubMed  CAS  Google Scholar 

  • Sommer W (1880) Erkrankung des Ammonshorn als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10:631–675.

    Google Scholar 

  • Steinhäuser C, Seifert G (2002) Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 447:227–237.

    PubMed  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702.

    PubMed  CAS  Google Scholar 

  • Tang FR, Lee WL (2001) Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy. J Neurocytol 30:137–143.

    PubMed  CAS  Google Scholar 

  • Tang FR, Lee WL, Yeo TT (2001) Expression of the group I metabotropic glutamate receptor in the hippocampus of patients with mesial temporal lobe epilepsy. J Neurocytol 30:403–411.

    PubMed  CAS  Google Scholar 

  • Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR (1990) A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med 323:497–502.

    PubMed  CAS  Google Scholar 

  • Temkin NR, Dikmen SS, Anderson GD, Wilensky AJ, Holmes MD, Cohen W, Newell DW, Nelson P, Awan A, Winn HR (1999) Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 91:593–600.

    PubMed  CAS  Google Scholar 

  • Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC (1999) Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88:1083–1091.

    PubMed  CAS  Google Scholar 

  • Thiele EA (2004) Managing epilepsy in tuberous sclerosis complex. J Child Neurol 19:680–686.

    PubMed  Google Scholar 

  • Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981.

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276.

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Dingledine R (1989) Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures. J Neurophysiol 61:927–938.

    PubMed  CAS  Google Scholar 

  • Trombley IK, Mirra SS (1981) Ultrastructure of tuberous sclerosis: cortical tuber and subependymal tumor. Ann Neurol 9:174–181.

    PubMed  CAS  Google Scholar 

  • Uesugi H, Shimizu H, Maehara T, Arai N, Nakayama H (2000) Presence of human herpesvirus 6 and herpes simplex virus detected by polymerase chain reaction in surgical tissue from temporal lobe epileptic patients. Psychiatry Clin Neurosci 54:589–593.

    PubMed  CAS  Google Scholar 

  • Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296.

    PubMed  CAS  Google Scholar 

  • Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD, Agre P, Frokiaer J, Nielsen S (2002) Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA 99:13131–13136.

    PubMed  CAS  Google Scholar 

  • Paesschen W, Van Revesz T, Duncan JS, King MD, Connelly A (1997) Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Ann Neurol 42:756–766.

    PubMed  Google Scholar 

  • Verkhratsky A, Steinhäuser C (2000) Ion channels in glial cells. Brain Res Rev 32:380–412.

    PubMed  CAS  Google Scholar 

  • Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232.

    PubMed  CAS  Google Scholar 

  • Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743.

    PubMed  CAS  Google Scholar 

  • Vezzani A, Conti M, Luigi A, De Ravizza T, Moneta D, Marchesi F, Simoni MG De (1999) Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19:5054–5065.

    PubMed  CAS  Google Scholar 

  • Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, Luigi A, De Simoni MG, De Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 97:11534–11539.

    PubMed  CAS  Google Scholar 

  • Virta M, Hurme M, Helminen M (2002) Increased frequency of interleukin-1beta (-511) allele 2 in febrile seizures. Pediatr Neurol 26:192–195.

    PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640.

    PubMed  CAS  Google Scholar 

  • Volterra A, Steinhäuser C (2004) Glial modulation of synaptic transmission in the hippocampus. Glia 47:249–257.

    PubMed  Google Scholar 

  • Wallraff A, Odermatt B, Willecke K, Steinhäuser C (2004) Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48:36–43.

    PubMed  Google Scholar 

  • Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447.

    PubMed  CAS  Google Scholar 

  • Walz W (1987) Swelling and potassium uptake in cultured astrocytes. Can J Physiol Pharmacol 65:1051–1057.

    PubMed  CAS  Google Scholar 

  • Walz W (1992) Mechanism of rapid K+-induced swelling of mouse astrocytes. Neurosci Lett 135:243–246.

    PubMed  CAS  Google Scholar 

  • Whitney KD, McNamara JO (2000) GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J Neurosci 20:7307–7316.

    PubMed  CAS  Google Scholar 

  • Winder DG, Conn PJ (1996) Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication. J Neurosci Res 46:131–137.

    PubMed  CAS  Google Scholar 

  • Wolf HK, Aliashkevich AF, Blumcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol 93:606–610.

    PubMed  CAS  Google Scholar 

  • Wong M, Ess KC, Uhlmann EJ, Jansen LA, Li W, Crino PB, Mennerick S, Yamada KA, Gutmann DH (2003) Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol 54:251–256.

    PubMed  CAS  Google Scholar 

  • Wroblewska B, Santi MR, Neale JH (1998) N-acetylaspartylglutamate activates cyclic AMP-coupled metabotropic glutamate receptors in cerebellar astrocytes. Glia 24:172–179.

    PubMed  CAS  Google Scholar 

  • Xiong ZQ, Stringer JL (1999) Astrocytic regulation of the recovery of extracellular potassium after seizures in vivo. Eur J Neurosci 11:1677–1684.

    PubMed  CAS  Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56:424–438.

    PubMed  CAS  Google Scholar 

  • Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391.

    PubMed  CAS  Google Scholar 

  • Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19:10767–10777.

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Devin K. Binder is supported by an American Epilepsy Society/Milken Family Foundation Early Career Physician Scientist Award. Christian Steinhäuser is supported by grants from the Deutsche Forschungsgemeinschaft (SFB/TR3, TPC1; SPP1172, SE 774/3).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Binder, D.K., Steinhäuser, C. (2009). Role of Astrocytes in Epilepsy. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_25

Download citation