Skip to main content

Alexander Disease: A Genetic Disorder of Astrocytes

  • Chapter
  • First Online:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

EM:

Electron microscopy

GABA:

γ-Amino butyric acid

GAD:

Glutamic acid decarboxylase

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

Glt-1:

Glial l-glutamate transporter

hGFAP:

Human GFAP

JNK:

c-Jun amino-terminal kinase

MIM:

Mendelian inheritance in man

MRI:

Magnetic resonance imaging

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TNFα:

Tumor necrosis factor α

TRH:

Thyrotropin releasing hormone

References

  • Alexander WS (1949) Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 72:373–381.

    PubMed  CAS  Google Scholar 

  • Andra K, Lassmann H, Bittner R, Shorny S, Fassler R, Propst F, Wiche G (1997) Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev 11:3143–3156.

    PubMed  CAS  Google Scholar 

  • Aoki Y, Haginoya K, Munakata M, Yokoyama H, Nishio T, Togashi N, Ito T, Suzuki Y, Kure S, Iinuma K, Brenner M, Matsubara Y (2001) A novel mutation in glial fibrillary acidic protein gene in a patient with Alexander disease. Neurosci Lett 312:71–74.

    PubMed  CAS  Google Scholar 

  • Asahina N, Okamoto T, Sudo A, Kanazawa N, Tsujino S, Saitoh S (2006) An infantile-juvenile form of Alexander disease caused by a R79H mutation in GFAP. Brain Dev 28:131–133.

    PubMed  Google Scholar 

  • Bar H, Mucke N, Kostareva A, Sjoberg G, Aebi U, Herrmann H (2005) Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages. Proc Natl Acad Sci USA 102:15099–15104.

    PubMed  Google Scholar 

  • Bar H, Kostareva A, Sjoberg G, Sejersen T, Katus HA, Herrmann H (2006a) Forced expression of desmin and desmin mutants in cultured cells: impact of myopathic missense mutations in the central coiled-coil domain on network formation. Exp Cell Res 312:1554–1565.

    Google Scholar 

  • Bar H, Mucke N, Ringler P, Muller SA, Kreplak L, Katus HA, Aebi U, Herrmann H (2006b) Impact of disease mutations on the desmin filament assembly process. J Mol Biol 360:1031–1042.

    Google Scholar 

  • Bassuk AG, Joshi A, Burton BK, Larsen MB, Burrowes DM, Stack C (2003) Alexander disease with serial MRS and a new mutation in the glial fibrillary acidic protein gene. Neurology 61:1014–1015.

    PubMed  CAS  Google Scholar 

  • Becker LE, Teixeira F (1988) Alexander’s disease. In: Norenberg MD, Hertz L, Schousboe A, eds), The biochemical pathology of astrocytes (Alan R. Liss. New York: pp 179–190.

    Google Scholar 

  • Bongcam-Rudloff E, Nister M, Betsholtz C, Wang JL, Stenman G, Huebner K, Croce CM, Westermark B (1991) Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res 51:1553–1560.

    PubMed  CAS  Google Scholar 

  • Boor PK, Groot K, de Waisfisz Q, Kamphorst W, Oudejans CB, Powers JM, Pronk JC, Scheper GC, Knaap MS van der (2005) MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol 64:412–419.

    PubMed  CAS  Google Scholar 

  • Borrett D, Becker LE (1985) Alexander’s disease. A disease of astrocytes. Brain 108 (Part 2):367–385.

    PubMed  Google Scholar 

  • Brenner M (1994) Structure and transcriptional regulation of the GFAP gene. Brain Pathol 4:245–257.

    PubMed  CAS  Google Scholar 

  • Brenner M, Lampel K, Nakatani Y, Mill J, Banner C, Mearow K, Dohadwala M, Lipsky R, Freese E (1990) Characterization of human cDNA and genomic clones for glial fibrillary acidic protein. Brain Res Mol Brain Res 7:277–286.

    PubMed  CAS  Google Scholar 

  • Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14:1030–1037.

    PubMed  CAS  Google Scholar 

  • Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27:117–120.

    PubMed  CAS  Google Scholar 

  • Brockmann K, Meins M, Taubert A, Trappe R, Grond M, Hanefeld F (2003) A novel GFAP mutation and disseminated white matter lesions: adult alexander disease? Eur Neurol 50:100–105.

    PubMed  Google Scholar 

  • Caceres-Marzal C, Vaquerizo J, Galan E, Fernandez S (2006) Early mitochondrial dysfunction in an infant with Alexander disease. Pediatr Neurol 35:293–296.

    PubMed  Google Scholar 

  • Castellani RJ, Perry G, Harris PL, Monnier VM, Cohen ML, Smith MA (1997) Advanced glycation modification of Rosenthal fibers in patients with Alexander disease. Neurosci Lett 231:79–82.

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Perry G, Harris PL, Cohen ML, Sayre LM, Salomon RG, Smith MA (1998) Advanced lipid peroxidation end-products in Alexander’s disease. Brain Res 787:15–18.

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169.

    PubMed  CAS  Google Scholar 

  • Chen WJ, Liem RK (1994) The endless story of the glial fibrillary acidic protein. J Cell Sci 107:2299–2311.

    PubMed  CAS  Google Scholar 

  • Cooper DN, Youssoufian H (1988) The CpG dinucleotide and human genetic disease. Hum Genet 78:151–155.

    PubMed  CAS  Google Scholar 

  • Cotton RG, Scriver CR (1998) Proof of “disease causing” mutation. Hum Mutat 12:1–3.

    PubMed  CAS  Google Scholar 

  • Crome L (1953) Megalencephaly associated with hyaline pan-neuropathy. Brain 76:215–228.

    PubMed  CAS  Google Scholar 

  • Perng M, Der Su M, Wen SF, Li R, Gibbon T, Prescott AR, Brenner M, Quinlan RA (2006) The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet 79:197–213.

    CAS  Google Scholar 

  • Dinopoulos A, Gorospe JR, Egelhoff JC, Cecil KM, Nicolaidou P, Morehart P, DeGrauw T (2006) Discrepancy between neuroimaging findings and clinical phenotype in Alexander disease. AJNR Am J Neuroradiol 27:2088–2092.

    PubMed  CAS  Google Scholar 

  • Duckett S, Schwartzman RJ, Osterholm J, Rorke LB, Friedman D, McLellan TL (1992) Biopsy diagnosis of familial Alexander’s disease. Pediatr Neurosurg 18:134–138.

    PubMed  CAS  Google Scholar 

  • Ellisdon AM, Pearce MC, Bottomley SP (2007) Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol 368:595–605.

    PubMed  CAS  Google Scholar 

  • Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237.

    PubMed  CAS  Google Scholar 

  • Eng LF, Lee YL, Kwan H, Brenner M, Messing A (1998) Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J Neurosci Res 53:353–360.

    PubMed  CAS  Google Scholar 

  • Escourolle R, Baecque C, de Gray F, Baumann N, Hauw JJ (1979) [Electron microscopic and neurochemical study of Alexander’s disease (author’s transl)]. Acta Neuropathol 45:133–140.

    PubMed  CAS  Google Scholar 

  • Farrell K, Chuang S, Becker LE (1984) Computed tomography in Alexander’s disease. Ann Neurol 15:605–607.

    PubMed  CAS  Google Scholar 

  • Friede RL (1964) Alexander’s disease. Arch Neurol 11:414–422.

    PubMed  CAS  Google Scholar 

  • Friedman JH, Ambler M (1992) Progressive parkinsonism associated with Rosenthal fibers: senile-onset Alexander’s disease? Neurology 42:1733–1735.

    PubMed  CAS  Google Scholar 

  • Fuchs E (1996) The cytoskeleton and disease: genetic disorders of intermediate filaments. Annu Rev Genet 30:197–231.

    PubMed  CAS  Google Scholar 

  • Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279:514–519.

    PubMed  CAS  Google Scholar 

  • Gessaga EC, Anzil AP (1975) Rod-shaped filamentous inclusions and other ultrastructural features in a cerebellar astrocytoma. Acta Neuropathol (Berl) 33:119–127.

    CAS  Google Scholar 

  • Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274:7619–7622.

    PubMed  CAS  Google Scholar 

  • Gingold MK, Bodensteiner JB, Schochet SS, Jaynes M (1999) Alexander’s disease: unique presentation. J Child Neurol 14:325–329.

    PubMed  CAS  Google Scholar 

  • Goebel HH (2003) Congenital myopathies at their molecular dawning. Muscle Nerve 27:527–548.

    PubMed  CAS  Google Scholar 

  • Goldman JE, Corbin E (1988) Isolation of a major protein component of Rosenthal fibers. Am J Pathol 130:569–578.

    PubMed  CAS  Google Scholar 

  • Goldman JE, Corbin E (1991) Rosenthal fibers contain ubiquitinated alpha B-crystallin. Am J Pathol 139:933–938.

    PubMed  CAS  Google Scholar 

  • Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14:29–41.

    PubMed  CAS  Google Scholar 

  • Gordon N (2003) Alexander disease. Eur J Paediatr Neurol 7:395–399.

    PubMed  Google Scholar 

  • Gorospe JR, Maletkovic J (2006) Alexander disease and megalencephalic leukoencephalopathy with subcortical cysts: leukodystrophies arising from astrocyte dysfunction. Ment Retard Dev Disabil Res Rev 12:113–122.

    PubMed  Google Scholar 

  • Gorospe JR, Naidu S, Johnson AB, Puri V, Raymond GV, Jenkins SD, Pedersen RC, Lewis D, Knowles P, Fernandez R, Vivo D, De Knaap MS, van der Messing A, Brenner M, Hoffman EP (2002) Molecular findings in symptomatic and pre-symptomatic Alexander disease patients. Neurology 58:1494–1500.

    PubMed  CAS  Google Scholar 

  • Hagemann TL, Gaeta SA, Smith MA, Johnson DA, Johnson JA, Messing A (2005) Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 14:2443–2458.

    PubMed  CAS  Google Scholar 

  • Hagemann TL, Connor JX, Messing A (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 26:11162–11173.

    PubMed  CAS  Google Scholar 

  • Hedberg KK, Chen LB (1986) Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp Cell Res 163:509–517.

    PubMed  CAS  Google Scholar 

  • Herndon RM, Rubinstein LJ, Freeman JM, Mathieson G (1970) Light and electron microscopic observations on Rosenthal fibers in Alexander’s disease and in multiple sclerosis. J Neuropathol Exp Neurol 29:524–551.

    PubMed  CAS  Google Scholar 

  • Herrmann H, Strelkov SV, Feja B, Rogers KR, Brettel M, Lustig A, Haner M, Parry DA, Steinert PM, Burkhard P, Aebi U (2000) The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly. J Mol Biol 298:817–832.

    PubMed  CAS  Google Scholar 

  • Hsiao VC, Tian R, Long H, Perng M, Der Brenner M, Quinlan RA, Goldman JE (2005) Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP. J Cell Sci 118:2057–2065.

    PubMed  CAS  Google Scholar 

  • Hurst LD, Ellegren H (1998) Sex biases in the mutation rate. Trends Genet 14:446–452.

    PubMed  CAS  Google Scholar 

  • Imamura A, Orii KE, Mizuno S, Hoshi H, Kondo T (2002) MR imaging and 1H-MR spectroscopy in a case of juvenile Alexander disease. Brain Dev 24:723–726.

    PubMed  Google Scholar 

  • Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, Teraoka K, Chikamori T, Yamashina A, Kimura A (2006) Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342:379–386.

    PubMed  CAS  Google Scholar 

  • Isaacs A, Baker M, Vrieze F, Wavrant-De Hutton M (1998) Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics 51:152–154.

    PubMed  CAS  Google Scholar 

  • Ishigaki K, Ito Y, Sawaishi Y, Kodaira K, Funatsuka M, Hattori N, Nakano K, Saito K, Osawa M (2006) TRH therapy in a patient with juvenile Alexander disease. Brain Dev 28:663–667.

    PubMed  Google Scholar 

  • Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78.

    PubMed  CAS  Google Scholar 

  • Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140:345–356.

    PubMed  CAS  Google Scholar 

  • Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143:487–495.

    PubMed  CAS  Google Scholar 

  • Jacob J, Robertson NJ, Hilton DA (2003) The clinicopathological spectrum of Rosenthal fibre encephalopathy and Alexander’s disease: a case report and review of the literature. J Neurol Neurosurg Psychiatry 74:807–810.

    PubMed  CAS  Google Scholar 

  • Johnson AB (1996) Alexander disease. In: Handbook of clinical neurology, Elsevier Science B.V. Amsterdam: pp 701–710.

    Google Scholar 

  • Johnson AB, Bettica A (1989) On-grid immunogold labeling of glial intermediate filaments in epoxy-embedded tissue. Am J Anat 185:335–341.

    PubMed  CAS  Google Scholar 

  • Johnson AB, Brenner M (2003) Alexander’s disease: clinical, pathologic, and genetic features. J Child Neurol 18:625–632.

    PubMed  Google Scholar 

  • Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15:234–240.

    PubMed  CAS  Google Scholar 

  • Kawai M, Sakai N, Miyake S, Tsukamoto H, Akagi M, Inui K, Mushiake S, Taniike M, Ozono K (2006) Novel mutation of gene coding for glial fibrillary acidic protein in a Japanese patient with Alexander disease. Brain Dev 28:60–62.

    PubMed  Google Scholar 

  • Kinoshita T, Imaizumi T, Miura Y, Fujimoto H, Ayabe M, Shoji H, Okamoto Y, Takashima H, Osame M, Nakagawa M (2003) A case of adult-onset Alexander disease with Arg416Trp human glial fibrillary acidic protein gene mutation. Neurosci Lett 350:169–172.

    PubMed  CAS  Google Scholar 

  • Klein EA, Anzil AP (1994) Prominent white matter cavitation in an infant with Alexander’s disease. Clin Neuropathol 13:31–38.

    PubMed  CAS  Google Scholar 

  • Koyama S, Arawaka S, Chang-Hong R, Wada M, Kawanami T, Kurita K, Kato M, Nagai M, Aoki M, Itoyama Y, Sobue G, Chan PH, Kato T (2006) Alteration of familial ALS-linked mutant SOD1 solubility with disease progression: its modulation by the proteasome and Hsp70. Biochem Biophys Res Commun 343:719–730.

    PubMed  CAS  Google Scholar 

  • Koyama Y, Goldman JE (1999) Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin. Am J Pathol 154:1563–1572.

    PubMed  CAS  Google Scholar 

  • Kress Y, Gaskin F, Horoupian DS, Brosnan C (1981) Nickel induction of Rosenthal fibers in rat brain. Brain Res 210:419–425.

    PubMed  CAS  Google Scholar 

  • Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675.

    PubMed  CAS  Google Scholar 

  • Kyllerman M, Rosengren L, Wiklund LM, Holmberg E (2005) Increased levels of GFAP in the cerebrospinal fluid in three subtypes of genetically confirmed Alexander disease. Neuropediatrics 36:319–323.

    PubMed  CAS  Google Scholar 

  • Ledeen RW, Chakraborty G (1998) Cytokines, signal transduction, and inflammatory demyelination: review and hypothesis. Neurochem Res 23:277–289.

    PubMed  CAS  Google Scholar 

  • Lee JM, Kim AS, Lee SJ, Cho SM, Lee DS, Choi SM, Kim DK, Ki CS, Kim JW (2006) A case of infantile Alexander disease accompanied by infantile spasms diagnosed by DNA analysis. J Korean Med Sci 21:954–957.

    PubMed  Google Scholar 

  • Leegwater PA, Yuan BQ, Steen J, van der Mulders J, Konst AA, Boor PK, Mejaski-Bosnjak V, Maarel SM, van der Frants RR, Oudejans CB, Schutgens RB, Pronk JC, Knaap MS van der (2001) Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 68:831–838.

    PubMed  CAS  Google Scholar 

  • Li R, Messing A, Goldman J, Brenner M (2002a) GFAP mutations in Alexander disease. Int J Dev Neurosci 20:259.

    Google Scholar 

  • Li R, Johnson AB, Salomons GS, van der Knaap MS, Rodriguez D, Boespflug-Tanguy O, Gorospe JR, Goldman JE, Messing A, Brenner M (2005a) Propensity for paternal inheritance of de novo mutations in Alexander disease. Hum Genet 1–8.

    Google Scholar 

  • Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, Cree B, Ruyle SZ, Banwell B, Siebert MDH Jr, Rolf CM, Cox H, Reddy A, Gutierrez-Solana LG, Collins A, Weller RO, Messing A, Knaap MS, van der Brenner M (2005b) Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol 57:310–326.

    Google Scholar 

  • Li WH, Yi S, Makova K (2002b) Male-driven evolution. Curr Opin Genet Dev 12:650–656.

    CAS  Google Scholar 

  • Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J Pathol 155:9–15.

    PubMed  CAS  Google Scholar 

  • Lowe J, McDermott H, Pike I, Spendlove I, Landon M, Mayer RJ (1992) Alpha B crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol 166:61–68.

    PubMed  CAS  Google Scholar 

  • Ma L, Yamada S, Wirtz D, Coulombe PA (2001) A ‘hot-spot’ mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol 3:503–506.

    PubMed  CAS  Google Scholar 

  • Matute C, Alberdi E, Ibarretxe G, Sanchez-Gomez MV (2002) Excitotoxicity in glial cells. Eur J Pharmacol 447:239–246.

    PubMed  CAS  Google Scholar 

  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci USA 93:6361–6366.

    PubMed  CAS  Google Scholar 

  • Meins M, Brockmann K, Yadav S, Haupt M, Sperner J, Stephani U, Hanefeld F (2002) Infantile Alexander disease: a GFAP mutation in monozygotic twins and novel mutations in two other patients. Neuropediatrics 33:194–198.

    PubMed  CAS  Google Scholar 

  • Messing A, Brenner M (2003) Alexander disease: GFAP mutations unify young and old. Lancet Neurol 2:75

    PubMed  Google Scholar 

  • Messing A, Goldman JE (2004) Alexander disease. In: Lazzarini RA, ed), Myelin and its diseases (Elsevier Academic Press. San Diego: pp 851–866.

    Google Scholar 

  • Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152:391–398.

    PubMed  CAS  Google Scholar 

  • Messing A, Goldman JE, Johnson AB, Brenner M (2001) Alexander disease: new insights from genetics. J Neuropathol Exp Neurol 60:563–573.

    PubMed  CAS  Google Scholar 

  • Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304.

    PubMed  CAS  Google Scholar 

  • Namekawa M, Takiyama Y, Aoki Y, Takayashiki N, Sakoe K, Shimazaki H, Taguchi T, Tanaka Y, Nishizawa M, Saito K, Matsubara Y, Nakano I (2002) Identification of GFAP gene mutation in hereditary adult-onset Alexander’s disease. Ann Neurol 52:779–785.

    PubMed  CAS  Google Scholar 

  • Nicholl ID, Quinlan RA (1994) Chaperone activity of alpha-crystallins modulates intermediate filament assembly. EMBO J 13:945–953.

    PubMed  CAS  Google Scholar 

  • Nobuhara Y, Nakahara K, Higuchi I, Yoshida T, Fushiki S, Osame M, Arimura K, Nakagawa M (2004) Juvenile form of Alexander disease with GFAP mutation and mitochondrial abnormality. Neurology 63:1302–1304.

    PubMed  CAS  Google Scholar 

  • Ogasawara N (1965) [Multiple sclerosis with Rosenthal’s fibers]. Acta Neuropathol 5:61–68.

    PubMed  CAS  Google Scholar 

  • Okamoto Y, Mitsuyama H, Jonosono M, Hirata K, Arimura K, Osame M, Nakagawa M (2002) Autosomal dominant palatal myoclonus and spinal cord atrophy. J Neurol Sci 195:71–76.

    PubMed  Google Scholar 

  • Pappolla MA (1986) Lewy bodies of Parkinson’s disease. Immune electron microscopic demonstration of neurofilament antigens in constituent filaments . Arch Pathol Lab Med 110:1160–1163.

    PubMed  CAS  Google Scholar 

  • Parry DA, Steinert PM (1999) Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys 32:99–187.

    PubMed  CAS  Google Scholar 

  • Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14:1590–1598.

    PubMed  CAS  Google Scholar 

  • Perng MD, Cairns L, den IP, van Prescott A, Hutcheson AM, Quinlan RA (1999a) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112 (Part 13):2099–2112.

    CAS  Google Scholar 

  • Perng MD, Muchowski PJ, Den IP, van Wu GJ, Hutcheson AM, Clark JI, Quinlan RA (1999b) The cardiomyopathy and lens cataract mutation in alphaB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem 274:33235–33243.

    CAS  Google Scholar 

  • Perng MD, Wen SF, den IP, van Prescott AR, Quinlan RA (2004) Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 15:2335–2346.

    PubMed  CAS  Google Scholar 

  • Pridmore CL, Baraitser M, Harding B, Boyd SG, Kendall B, Brett EM (1993) Alexander’s disease: clues to diagnosis. J Child Neurol 8:134–144.

    PubMed  CAS  Google Scholar 

  • Probst EN, Hagel C, Weisz V, Nagel S, Wittkugel O, Zeumer H, Kohlschutter A (2003) Atypical focal MRI lesions in a case of juvenile Alexander’s disease. Ann Neurol 53:118–120.

    PubMed  Google Scholar 

  • Quinlan R (2001) Cytoskeletal catastrophe causes brain degeneration. Nat Genet 27:10–11.

    PubMed  CAS  Google Scholar 

  • Quinlan R (2002) Cytoskeletal competence requires protein chaperones. Prog Mol Subcell Biol 28:219–233.

    PubMed  CAS  Google Scholar 

  • Quinlan RA, Hatzfeld M, Franke WW, Lustig A, Schulthess T, Engel J (1986) Characterization of dimer subunits of intermediate filament proteins. J Mol Biol 192:337–349.

    PubMed  CAS  Google Scholar 

  • Quinlan RA, Brenner M, Goldman JE, Messing A (2007) GFAP and its role in Alexander disease. Exp Cell Res 313:2077–2087.

    PubMed  CAS  Google Scholar 

  • Ralton JE, Lu X, Hutcheson AM, Quinlan RA (1994) Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. J Cell Sci 107:1935–1948.

    PubMed  CAS  Google Scholar 

  • Reichard EA, Ball WS Jr, Bove KE (1996) Alexander disease: a case report and review of the literature. Pediatr Pathol Lab Med 16:327–343.

    PubMed  CAS  Google Scholar 

  • Reynolds LP, Allen GV (2003) A review of heat shock protein induction following cerebellar injury. Cerebellum 2:171–177.

    PubMed  CAS  Google Scholar 

  • Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, Ng S, Goizet C, Gelot A, Surtees R, Pedespan JM, Hernandorena X, Troncoso M, Uziel G, Messing A, Ponsot G, Pham-Dinh D, Dautigny A, Boespflug-Tanguy O (2001) Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet 69:1134–1140.

    PubMed  CAS  Google Scholar 

  • Rosenthal W (1898) Über eine eigenthümliche, mit syringomyelie complicirte geschwulst des rückenmarks. Bietr Pathol Anat 23:111–143.

    Google Scholar 

  • Russo LS Jr, Aron A, Anderson PJ (1976) Alexander’s disease: a report and reappraisal. Neurology 26:607–614.

    PubMed  Google Scholar 

  • Salvi F, Aoki Y, Della Nave R, Vella A, Pastorelli F, Scaglione C, Matsubara Y, Mascalchi M (2005) Adult Alexander’s disease without leukoencephalopathy. Ann Neurol 58:813–814.

    PubMed  Google Scholar 

  • Sawaishi Y, Hatazawa J, Ochi N, Hirono H, Yano T, Watanabe Y, Okudera T, Takada G (1999) Positron emission tomography in juvenile Alexander disease. J Neurol Sci 165:116–120.

    PubMed  CAS  Google Scholar 

  • Sawaishi Y, Yano T, Takaku I, Takada G (2002) Juvenile Alexander disease with a novel mutation in glial fibrillary acidic protein gene. Neurology 58:1541–1543.

    PubMed  CAS  Google Scholar 

  • Schmitt A, Gofferje V, Weber M, Meyer J, Mossner R, Lesch KP (2003) The brain-specific protein MLC1 implicated in megalencephalic leukoencephalopathy with subcortical cysts is expressed in glial cells in the murine brain. Glia 44:283–295.

    PubMed  Google Scholar 

  • Schroder R, Kunz WS, Rouan F, Pfendner E, Tolksdorf K, Kappes-Horn K, Altenschmidt-Mehring M, Knoblich R, Ven PF, van der Reimann J, Furst DO, Blumcke I, Vielhaber S, Zillikens D, Eming S, Klockgether T, Uitto J, Wiche G, Rolfs A (2002) Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 61:520–530.

    PubMed  CAS  Google Scholar 

  • Schuelke M, Smeitink J, Mariman E, Loeffen J, Plecko B, Trijbels F, Stockler-Ipsiroglu S, Heuvel L van den (1999) Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 21:260–261.

    PubMed  CAS  Google Scholar 

  • Schwankhaus JD, Parisi JE, Gulledge WR, Chin L, Currier RD (1995) Hereditary adult-onset Alexander’s disease with palatal myoclonus, spastic paraparesis, and cerebellar ataxia. Neurology 45:2266–2271.

    PubMed  CAS  Google Scholar 

  • Seil FJ, Schochet SS Jr, Earle KM (1968) Alexander’s disease in an adult. Report of a case. Arch Neurol 19:494–502.

    PubMed  CAS  Google Scholar 

  • Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Ann Neurol 54:804–810.

    PubMed  CAS  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599.

    PubMed  CAS  Google Scholar 

  • Shiihara T, Kato M, Honma T, Ohtaki S, Sawaishi Y, Hayasaka K (2002) Fluctuation of computed tomographic findings in white matter in Alexander’s disease. J Child Neurol 17:227–230.

    PubMed  Google Scholar 

  • Shiihara T, Sawaishi Y, Adachi M, Kato M, Hayasaka K (2004) Asymptomatic hereditary Alexander’s disease caused by a novel mutation in GFAP. J Neurol Sci 225:125–127.

    PubMed  CAS  Google Scholar 

  • Shiroma N, Kanazawa N, Izumi M, Sugai K, Fukumizu M, Sasaki M, Hanaoka S, Kaga M, Tsujino S (2001) Diagnosis of Alexander disease in a Japanese patient by molecular genetic analysis. J Hum Genet 46:579–582.

    PubMed  CAS  Google Scholar 

  • Shiroma N, Kanazawa N, Kato Z, Shimozawa N, Imamura A, Ito M, Ohtani K, Oka A, Wakabayashi K, Iai M, Sugai K, Sasaki M, Kaga M, Ohta T, Tsujino S (2003) Molecular genetic study in Japanese patients with Alexander disease: a novel mutation, R79L. Brain Dev 25:116–121.

    PubMed  Google Scholar 

  • Singh R, Nielsen AL, Johansen MG, Jorgensen AL (2003) Genetic polymorphism and sequence evolution of an alternatively spliced exon of the glial fibrillary acidic protein gene, GFAP. Genomics 82:185–193.

    PubMed  CAS  Google Scholar 

  • Sistermans EA, Coo RF, de Wijs IJ, de Oost BA Van (1998) Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease. Neurology 50:1749–1754.

    PubMed  CAS  Google Scholar 

  • Smith FJ, Eady RA, Leigh IM, McMillan JR, Rugg EL, Kelsell DP, Bryant SP, Spurr NK, Geddes JF, Kirtschig G, Milana G, Bono AG, de Owaribe K, Wiche G, Pulkkinen L, Uitto J, McLean WH, Lane EB (1996a) Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat Genet 13:450–457.

    CAS  Google Scholar 

  • Smith MA, Siedlak SL, Richey PL, Nagaraj RH, Elhammer A, Perry G (1996b) Quantitative solubilization and analysis of insoluble paired helical filaments from Alzheimer disease. Brain Res 717:99–108.

    CAS  Google Scholar 

  • Smith TW, Tyler HR, Schoene WC (1975) Atypical astrocytes and Rosenthal fibers in a case of amyotrophic lateral sclerosis associated with a cerebral glioblastoma multiforme. Acta Neuropathol 31:29–34.

    PubMed  CAS  Google Scholar 

  • Soellner P, Quinlan RA, Franke WW (1985) Identification of a distinct soluble subunit of an intermediate filament protein: tetrameric vimentin from living cells. Proc Natl Acad Sci USA 82:7929–7933.

    PubMed  CAS  Google Scholar 

  • Spalke G, Mennel HD (1982) Alexander’s disease in an adult: clinicopathologic study of a case and review of the literature. Clin Neuropathol 1:106–112.

    PubMed  CAS  Google Scholar 

  • Sreedharan J, Shaw CE, Jarosz J, Samuel M (2007) Alexander disease with hypothermia, microcoria, and psychiatric and endocrine disturbances. Neurology 68:1322–1323.

    PubMed  Google Scholar 

  • Steinert PM, Marekov LN, Parry DA (1999) Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J Biol Chem 274:1657–1666.

    PubMed  CAS  Google Scholar 

  • Stumpf E, Masson H, Duquette A, Berthelet F, McNabb J, Lortie A, Lesage J, Montplaisir J, Brais B, Cossette P (2003) Adult Alexander disease with autosomal dominant transmission: a distinct entity caused by mutation in the glial fibrillary acid protein gene. Arch Neurol 60:1307–1312.

    PubMed  Google Scholar 

  • Suzuki Y, Kanazawa N, Takenaka J, Okumura A, Negoro T, Tsujino S (2004) A case of infantile Alexander disease with a milder phenotype and a novel GFAP mutation, L90P. Brain Dev 26:206–208.

    PubMed  Google Scholar 

  • Takanashi J, Sugita K, Tanabe Y, Niimi H (1998) Adolescent case of Alexander disease: MR imaging and MR spectroscopy. Pediatr Neurol 18:67–70.

    PubMed  CAS  Google Scholar 

  • Takemura M, Gomi H, Colucci-Guyon E, Itohara S (2002) Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci 22:6972–6979.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702.

    PubMed  CAS  Google Scholar 

  • Tanaka KF, Takebayashi H, Yamazaki Y, Ono K, Naruse M, Iwasato T, Itohara S, Kato H, Ikenaka K (2007) Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance. Glia 55:617–631.

    PubMed  Google Scholar 

  • Tang G, Xu Z, Goldman JE (2006) Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem 281:38634–38643.

    PubMed  CAS  Google Scholar 

  • Thyagarajan D, Chataway T, Li R, Gai WP, Brenner M (2004) Dominantly-inherited adult-onset leukodystrophy with palatal tremor caused by a mutation in the glial fibrillary acidic protein gene. Mov Disord 19:1244–1248.

    PubMed  Google Scholar 

  • Tian R, Gregor M, Wiche G, Goldman JE (2006) Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am J Pathol 168:888–897.

    PubMed  CAS  Google Scholar 

  • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15:608–617.

    PubMed  CAS  Google Scholar 

  • Towfighi J, Young R, Sassani J, Ramer J, Horoupian DS (1983) Alexander’s disease: further light-, and electron-microscopic observations. Acta Neuropathol 61:36–42.

    PubMed  CAS  Google Scholar 

  • Townsend JJ, Wilson JF, Harris T, Coulter D, Fife R (1985) Alexander’s disease. Acta Neuropathol 67:163–166.

    PubMed  CAS  Google Scholar 

  • Trollmann R, Kraus C, Orlova N, Rupprecht T, Wenzel D, Rauch A (2003) Diagnosesicherung des morbus Alexander in vivo durch mutationsanalyse des GFAP-gens. Monatsschr Kinderheilkd 3:311–314.

    Google Scholar 

  • Knaap MS, van der Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, Begeer JC, Coster R, Van Barth PG, Thomas NH, Valk J, Powers JM (2001) Alexander disease: diagnosis with mr imaging. Am J Neuroradiol 22:541–552.

    PubMed  Google Scholar 

  • Knaap MS, van der Salomons GS, Li R, Franzoni E, Gutierrez-Solana LG, Smit LM, Robinson R, Ferrie CD, Cree B, Reddy A, Thomas N, Banwell B, Barkhof F, Jakobs C, Johnson A, Messing A, Brenner M (2005) Unusual variants of Alexander’s disease. Ann Neurol 57:327–338.

    PubMed  Google Scholar 

  • Knaap MS, van der Ramesh V, Schiffmann R, Blaser S, Kyllerman M, Gholkar A, Ellison DW, Voorn JP, van der Dooren SJ, van Jakobs C, Barkhof F, Salomons GS (2006) Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology 66:494–498.

    PubMed  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95.

    PubMed  CAS  Google Scholar 

  • Wilson SP, Al-Sarraj S, Bridges LR (1996) Rosenthal fiber encephalopathy presenting with demyelination and Rosenthal fibers in a solvent abuser: adult Alexander’s disease? Clin Neuropathol 15:13–16.

    PubMed  CAS  Google Scholar 

  • Wippold FJ IIPerry A, Lennerz J (2006) Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol 27:958–961.

    PubMed  Google Scholar 

  • Wu KC, Bryan JT, Morasso MI, Jang SI, Lee JH, Yang JM, Marekov LN, Parry DA, Steinert PM (2000) Coiled-coil trigger motifs in the 1B and 2B rod domain segments are required for the stability of keratin intermediate filaments. Mol Biol Cell 11:3539–3558.

    PubMed  CAS  Google Scholar 

  • Wu Y, Jiang YW, Wang JM, Yang YL, Zhang YH, Chang XZ, Qin J, Xiao JX, Wu X (2006) GFAP mutations in 3 Chinese infantile Alexander disease patients. J Inherit Metab Dis 29:66.

    Google Scholar 

  • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263.

    PubMed  CAS  Google Scholar 

  • Zhang X, Haaf M, Todorich B, Grosstephan E, Schieremberg H, Surguladze N, Connor JR (2005) Cytokine toxicity to oligodendrocyte precursors is mediated by iron. Glia 52:199–208.

    PubMed  Google Scholar 

  • Zlotogora J (1998) Germ line mosaicism. Hum Genet 102:381–386.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Daniel M. Bolt for statistical assistance, Marjo van der Knaap for permission to use Fig. 24.1, Anne B. Johnson for permission to use Fig. 24.2, and Rong Li for the images in Fig. 24.7. The authors would also like to thank the editors for giving them the opportunity to write this extensive, and final, review of their careers. One more would be too many. This work was supported by NINDS grant P01NS42803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brenner, M., Goldman, J.E., Quinlan, R.A., Messing, A. (2009). Alexander Disease: A Genetic Disorder of Astrocytes. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_24

Download citation

Publish with us

Policies and ethics