Role of Ion Channels and Amino-Acid Transporters in the Biology of Astrocytic Tumors

  • H Sontheimer

The malignant transformation of central nervous system (CNS) glial cells gives rise to tumors that are collectively called gliomas. Although the vast majority of these cancers are believed to be of astrocytic origin, the actual cell of origin remains unknown. While gliomas present with many of the same genetic alterations in tumor suppressor genes or oncogenes that are common amongst cancers, their biology differs quite significantly from that of other neoplasms. Importantly, their growth is limited by the size of the skull, and hence tumor expansion can only occur when normal brain is destroyed. Recent research suggests that gliomas accomplish this by releasing glutamate at concentrations that cause excitotoxic neuronal cell death. Peritumoral glutamate may also contribute to seizures, which are a common comorbidity in patients with malignant glioma. Another differentiating feature of gliomas is their unusual ability to spread by diffusely invading normal brain tissue rather than...


Glioma Cell Malignant Glioma Glutamate Release Glioma Cell Invasion Culture Glioma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors




Channels big conductance Ca2+-activated




Central nervous system


Excitatory amino acid transporter


l-glutamate/l-aspartate transporter


Glial l-glutamate transporter




Matrix metalloproteinase II




NMDA receptors


5-Nitro-2-(3-phenyl-propylamino)benzoic acid



The author is grateful for the continued support by grants from the National Institutes of Health RO1 NS-31234, RO1 NS-52634, RO1 NS-36692, and P50-CA97247.


  1. Alvarez-Buylla A, Herrera DG, Wichterle H (2000) The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127: 1–11.PubMedCrossRefGoogle Scholar
  2. Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4: 991–1001.PubMedCrossRefGoogle Scholar
  3. Andersen P, Dingledine R, Gjerstad L, Langmoen IA, Laursen AM (1980) Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol 305: 279–296.PubMedGoogle Scholar
  4. Azizi SA, Miyamoto C (1998) Principles of treatment of malignant gliomas in adults: an overview. J Neurovirol 4: 204–216.PubMedCrossRefGoogle Scholar
  5. Behrens PF, Langemann H, Strohschein R, Draeger J, Hennig J (2000) Extracellular glutamate and other metabolites in and around RG2 rat glioma: an intracerebral microdialysis study. J Neurooncol 47: 11–22.PubMedCrossRefGoogle Scholar
  6. Bordey A, Sontheimer H, Trouslard J (2000) Muscarinic activation of BK channels induces membrane oscillations in glioma cells and leads to inhibition of cell migration. J Membr Biol 176: 31–40.PubMedCrossRefGoogle Scholar
  7. Bryant JA, Finn RS, Slamon DJ, Cloughesy TF, Charles AC (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3: 1243–1249.PubMedCrossRefGoogle Scholar
  8. Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24: 1273–1280.PubMedCrossRefGoogle Scholar
  9. Chen L, Tian L, MacDonald SHF, McClafferty H, Hammond MSL, Huibant JM, Ruth P, Knaus HG, Shipston MJ (2005) Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. J Biol Chem 280: 33599–33609.PubMedCrossRefGoogle Scholar
  10. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634.PubMedCrossRefGoogle Scholar
  11. Chou CY, Shen MR, Wu SN (1995) Volume-sensitive chloride channels associated with human cervical carcinogenesis. Cancer Res 55: 6077–6083.PubMedGoogle Scholar
  12. Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, Sontheimer H (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25: 7101–7110.PubMedCrossRefGoogle Scholar
  13. Cone CJ (1974) The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann N Y Acad Sci 238: 420–435.PubMedCrossRefGoogle Scholar
  14. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 1–105.PubMedCrossRefGoogle Scholar
  15. DeBin JA, Maggio JE, Strichartz GR (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol 264: C361–C369.PubMedGoogle Scholar
  16. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70: 217–228.PubMedCrossRefGoogle Scholar
  17. Deshane J, Garner CC, Sontheimer H (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 278: 4135–4144.PubMedCrossRefGoogle Scholar
  18. Dick GM, Kong ID, Sanders KM (1999) Effects of anion channel antagonists in canine colonic myocytes: comparative pharmacology of Cl−. , Ca2+ and K+ currents Br J Pharmacol 127: 1819–1831.PubMedCrossRefGoogle Scholar
  19. Duffy SM, Leyland ML, Conley EC, Bradding P (2001) Voltage-dependent and calcium-activated ion channels in the human mast cell line HMC-1. J Leukoc Biol 70: 233–240.PubMedGoogle Scholar
  20. Endo M, Jain RK, Witwer B, Brown D (1999) Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res 58: 89–98.PubMedCrossRefGoogle Scholar
  21. Gladson CL (1999) The extracellular matrix of gliomas: modulation of cell function. J Neuropathol Exp Neurol 58: 1029–1040.PubMedCrossRefGoogle Scholar
  22. Gunnarson E, Zelenina M, Aperia A (2004) Regulation of brain aquaporins. Neuroscience 129: 947–955.PubMedCrossRefGoogle Scholar
  23. Hockaday DC, Shen S, Fiveash J, Raubitschek A, Colcher D, Liu A, Alvarez V, Mamelak AN (2005) Imaging glioma extent with 131I-TM-601. J Nucl Med 46: 580–586.PubMedGoogle Scholar
  24. Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12: 3675–3685.PubMedCrossRefGoogle Scholar
  25. Hollmann M, Hartley M, Heinemann S (1991) Ca2+. permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition Science 252: 851–853.PubMedCrossRefGoogle Scholar
  26. Huncharek M, Muscat J (1998) Treatment of recurrent high grade astrocytoma; results of a systematic review of 1,415 patients. Anticancer Res 18: 1303–1311.PubMedGoogle Scholar
  27. Iida M, Sunaga S, Hirota N, Kuribayashi N, Sakagami H, Takeda M, Matsumoto K (1997) Effect of glutathione-modulating compounds on hydrogen-peroxide-induced cytotoxicity in human glioblastoma and glioma cell lines. J Cancer Res Clin Oncol 123: 619–622.PubMedCrossRefGoogle Scholar
  28. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca2+. -permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells Nat Med 8: 971–978.PubMedCrossRefGoogle Scholar
  29. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130.PubMedCrossRefGoogle Scholar
  30. Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, Inatomi J, Sawa H, Ida Y, Endou H (2001) Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta 1512: 335–344.PubMedCrossRefGoogle Scholar
  31. Kim WT, Rioult MG, Cornell-Bell AH (1994) Glutamate-induced calcium signaling in astrocytes. Glia 11: 173–184.PubMedCrossRefGoogle Scholar
  32. Kleihues P, Ohgaki H, Aguzzi A (1995) Gliomas. In: (Kettenmann H, Ransom BR, eds), Neuroglia Oxford University Press. New York: pp 1044–1063.Google Scholar
  33. Knuutila S (1984) Role of free radicals in genetic damage (mutation). Med Biol 62: 110–114.PubMedGoogle Scholar
  34. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129: 1043–1054.CrossRefGoogle Scholar
  35. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20: 5733–5740.PubMedGoogle Scholar
  36. Komuro H, Rakic P (1996) Intracellular Ca2+. fluctuations modulate the rate of neuronal migration Neuron 17: 275–285.PubMedCrossRefGoogle Scholar
  37. Komuro H, Rakic P (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+. fluctuations J Neurobiol 37: 110–130.PubMedCrossRefGoogle Scholar
  38. Labrakakis C, Patt S, Hartmann J, Kettenmann H (1998) Functional GABA (A) receptors on human glioma cells. Eur J Neurosci 10: 231–238.PubMedCrossRefGoogle Scholar
  39. Linskey ME (1997) Glial ontogeny and glial neoplasia: the search for closure. J Neurooncol 34: 5–22.PubMedCrossRefGoogle Scholar
  40. Lipton SA (2004) Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 1: 101–110.PubMedCrossRefGoogle Scholar
  41. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med 330: 613–622.PubMedCrossRefGoogle Scholar
  42. Little AR, O’Callagha JP (2001) Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology 22: 607–618.PubMedCrossRefGoogle Scholar
  43. Liu X, Chang Y, Reinhart PH, Sontheimer H, Chang Y (2002) Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 22: 1840–1849.PubMedGoogle Scholar
  44. LoTurco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15: 1287–1298.PubMedCrossRefGoogle Scholar
  45. Louis DN (1994) The p53. gene and protein in human brain tumors J Neuropathol Exp Neurol 53: 11–21.PubMedCrossRefGoogle Scholar
  46. Lyons SA, O’Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39: 162–173.PubMedCrossRefGoogle Scholar
  47. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamte signaling promotes glioma cell invasion. Cancer Res 67: 9463–9471.PubMedCrossRefGoogle Scholar
  48. MacFarlane SN, Sontheimer H (2000) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30: 39–48.PubMedCrossRefGoogle Scholar
  49. Maghazachi AA (2000) Intracellular signaling events at the leading edge of migrating cells. Int J Biochem Cell Biol 32: 931–943.PubMedCrossRefGoogle Scholar
  50. Maher CO, Raffel C (2004) Neurosurgical treatment of brain tumors in children. Pediatr Clin North Am 51: 327–357.PubMedCrossRefGoogle Scholar
  51. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15: 1311–1333.PubMedCrossRefGoogle Scholar
  52. Mamelak AN, Rosenfeld S, Bucholz R, Raubitschek A, Nabors LB, Fiveash JB, Shen S, Khazaeli MB, Colcher D, Liu A, Osman M, Guthrie B, Schade-Bijur S, Hablitz DM, Alvarez VL, Gonda MA (2006) Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24: 3644–3650.PubMedCrossRefGoogle Scholar
  53. Manning TJ, JrParker JC, Sontheimer H (2000) Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45: 185–199.PubMedCrossRefGoogle Scholar
  54. McCoy E, Sontheimer H (2007) Expression and function of water channels (Aquaporins) in migrating malignant astrocytes. Glia 55: 1034–1043.PubMedCrossRefGoogle Scholar
  55. McFerrin MB, Sontheimer H (2006) A role for ion channels in glioma cell invasion. Neuron Glial Biol 2: 39–49.CrossRefGoogle Scholar
  56. Mitchell JB, Cook JA, DeGraff W, Glatstein E, Russo A (1989) Glutathione modulation in cancer treatment: will it work? Int J Radiat Oncol Biol Phys 16: 1289–1295.PubMedCrossRefGoogle Scholar
  57. Oberndorfer S, Schmal T, Lahrmann H, Urbanits S, Lindner K, Grisold W (2002) [The frequency of seizures in patients with primary brain tumors or cerebral metastases. An evaluation from the Ludwig Boltzmann Institute of Neuro-Oncology and the Department of Neurology, Kaiser Franz Josef Hospital, Vienna]. Wien Klin Wochenschr 114: 911–916.PubMedGoogle Scholar
  58. Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14: 61–76.PubMedCrossRefGoogle Scholar
  59. Olsen ML, Sontheimer H (2004) Mislocalization of Kir channels in malignant glia. Glia 46: 63–73.PubMedCrossRefGoogle Scholar
  60. Olsen ML, Schade S, Lyons SA, Amarillo MD, Sontheimer H (2003) Expresssion of voltage-gated chloride channels in human glioma cells. J Neurosci 23: 5572–5582.PubMedGoogle Scholar
  61. Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H (2006) Functional expression of K (ir)4.1 channels in spinal cord astrocytes. Glia 53: 516–528.PubMedCrossRefGoogle Scholar
  62. Pellegrini-Giampietro DE, Bennett MV, Zukin RS (1992) Are Ca2+ -permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 144: 65–69.PubMedCrossRefGoogle Scholar
  63. Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15: 339–347.PubMedCrossRefGoogle Scholar
  64. Ransom CB, Sontheimer H (2001) BK channels in human glioma cells. J Neurophysiol 85: 790–803.PubMedGoogle Scholar
  65. Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21: 7674–7683.PubMedGoogle Scholar
  66. Ransom CB, Liu X, Sontheimer H (2002) BK channels in human glioma cells have enhanced calcium sensitivity. Glia 38: 281–291.PubMedCrossRefGoogle Scholar
  67. Rijpkema M, Schuuring J, van der MY, van der GM, Bernsen H, Boerman R, van der KA, Heerschap A (2003) Characterization of oligodendrogliomas using short echo time 1H MR spectroscopic imaging. NMR Biomed 16: 12–18.PubMedCrossRefGoogle Scholar
  68. Roslin M, Henriksson R, Bergstrom P, Ungerstedt U, Bergenheim AT (2003) Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neurooncol 61: 151–160.PubMedCrossRefGoogle Scholar
  69. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang YF, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675–686.PubMedCrossRefGoogle Scholar
  70. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002a) Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87: 621–623.CrossRefGoogle Scholar
  71. Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA (2002b) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72: 262–265.CrossRefGoogle Scholar
  72. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274: 11455–11458.PubMedCrossRefGoogle Scholar
  73. Shapiro JR (2001) Genetics of brain neoplasms. Curr Neurol Neurosci Rep 1: 217–224.PubMedCrossRefGoogle Scholar
  74. Shen MR, Chou CY, Browning JA, Wilkins RJ, Ellory JC (2001) Human cervical cancer cells use Ca2+. signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease J Physiol 537: 2–62.CrossRefGoogle Scholar
  75. Shen S, Khazaeli MB, Gillespie GY, Alvarez VL (2005) Radiation dosimetry of 131I-chlorotoxin for targeted radiotherapy in glioma-bearing mice. J Neurooncol 71: 113–119.PubMedCrossRefGoogle Scholar
  76. Simone G, Tamba M, Quintiliani M (1983) Role of glutathione in affecting the radiosensitivity of molecular and cellular systems. Radiat Environ Biophys 22: 215–223.PubMedCrossRefGoogle Scholar
  77. Soroceanu L, Gillespie Y, Khazaeli MB, Sontheimer H (1998) Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 58: 4871–4879.PubMedGoogle Scholar
  78. Soroceanu L, Manning TJ Jr, Sontheimer H (1999) Modulation of glioma cell migration and invasion using Cl−. and K+ ion channel blockers J Neurosci 19: 5942–5954.PubMedGoogle Scholar
  79. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7: 1010–1015.PubMedCrossRefGoogle Scholar
  80. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter glt-1. Science 276: 1699–1702.PubMedCrossRefGoogle Scholar
  81. Tang P, Steck PA, Yung WK (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 35: 303–314.PubMedCrossRefGoogle Scholar
  82. Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9: 1646–1655.PubMedCrossRefGoogle Scholar
  83. Ullrich N, Sontheimer H (1996) Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am J Physiol 270: C1511–C1521.PubMedGoogle Scholar
  84. Ullrich N, Gillespie GY, Sontheimer H (1996) Human astrocytoma cells express a unique chloride current. Neuroreport 7: 1020–1024.PubMedCrossRefGoogle Scholar
  85. Von Deimling A, Louis DN, Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15: 328–338.PubMedCrossRefGoogle Scholar
  86. Walz W (2002) Chloride/anion channels in glial cell membranes. Glia 40: 1–10.PubMedCrossRefGoogle Scholar
  87. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59: 4383–4391.PubMedGoogle Scholar
  88. Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19: 10767–10777.PubMedGoogle Scholar
  89. Zamecnik J (2005) The extracellular space and matrix of gliomas. Acta Neuropathol (Berl) 110: 435–442.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Neurobiology and Center for Glial Biology in MedicineThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations