Advertisement

Neural Stem Cells Disguised as Astrocytes

  • Rebecca A. Ihrie
  • Arturo Alvarez-Buylla
Chapter

2.1 Identification of Neural Stem Cells in the Central Nervous System

2.1.1 Astrocytes and Neurogenesis in the Adult Brain

As a major subclass of glial cells, astrocytes fulfill a diverse array of functional and architectural roles in the brain. These cells were originally classified as “support cells” of the nervous system. A common assumption of classical neuroscience was that neurons and glia are derived from distinct pools of progenitor cells (His, 1889). This idea arose partly due to the sequential developmental patterning of the nervous system; during cortical development, neurons are generated prior to glial cells. The supposed division between neuronal and glial lineages was also employed to explain observations of rare proliferating cells in the adult brain: It was thought that proliferation in the mature brain reflected the generation of new glial cells, and did not correspond to the production of new neurons. However, a battery of experiments have now demonstrated ongoing...

Keywords

Glial Fibrillary Acidic Protein Dentate Gyrus Neural Stem Cell Radial Glia Neuroepithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Ara-C

Cytosine-β-d-arabinofuranoside

BMP

Bone morphogenetic protein

BrdU

Bromodeoxyuridine

CNS

Central nervous system

EGF

Epidermal growth factor

EGFR

EGF receptor

FGF

Fibroblast growth factor

GCL

Granule cell layer

GFAP

Glial fibrillary acidic protein

HSV-TK

Herpes simplex virus thymidine kinase

LeX/CD15

Lewis antigen

PGCs

periglomerular cells

PDGF

Platelet-derived growth factor

PDGFRα

PDGF receptor alpha

PSA-NCAM

Polysialic acid-neural cell adhesion molecule

RCAS-AP

Replication-competent avian leukosis virus encoding alkaline phosphatase

RMS

Rostral migratory stream

SGZ

Subgranular zone

SVZ

Subventricular zone

Notes

Acknowledgments

The authors wish to thank the members of the Alvarez-Buylla laboratory for helpful discussions and comments on the manuscript. Work in the Alvarez-Buylla laboratory is supported by grants from the NIH and the Goldhirsh Foundation and a gift from John and Frances Bowes. Rebecca Ihrie is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation. Arturo Alvarez-Buylla holds the Heather and Melanie Muss Endowed Chair in Neurosurgery.

References

  1. Aguirre A, Rizvi TA, Ratner N, Gallo V (2005) Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci 25:11092–11106.PubMedCrossRefGoogle Scholar
  2. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894–897.PubMedCrossRefGoogle Scholar
  3. Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128.PubMedCrossRefGoogle Scholar
  4. Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591.PubMedCrossRefGoogle Scholar
  5. Altman J, Gopal DD (1965) Post-natal origin of microneurones in the rat brain. Nature 207:953–956.PubMedCrossRefGoogle Scholar
  6. Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–390.PubMedCrossRefGoogle Scholar
  7. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634.PubMedGoogle Scholar
  8. Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686.PubMedCrossRefGoogle Scholar
  9. Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109.PubMedCrossRefGoogle Scholar
  10. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293.PubMedCrossRefGoogle Scholar
  11. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826.PubMedCrossRefGoogle Scholar
  12. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890.PubMedCrossRefGoogle Scholar
  13. Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790.PubMedCrossRefGoogle Scholar
  14. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760.PubMedCrossRefGoogle Scholar
  15. Bull ND, Bartlett PF (2005) The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci 25:10815–10821.PubMedCrossRefGoogle Scholar
  16. Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875.PubMedCrossRefGoogle Scholar
  17. Chiasson BJ, Tropepe V, Morshead CM, Van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471.PubMedGoogle Scholar
  18. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, Van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658.PubMedGoogle Scholar
  19. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925.PubMedCrossRefGoogle Scholar
  20. Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J (2004) Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci 27:453–465.PubMedCrossRefGoogle Scholar
  21. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061.PubMedGoogle Scholar
  22. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999a) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA 96:11619–11624.CrossRefGoogle Scholar
  23. Doetsch F, Caille I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999b) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:1–20.CrossRefGoogle Scholar
  24. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034.PubMedCrossRefGoogle Scholar
  25. Eckenhoff MF, Rakic P (1984) Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J Comp Neurol 223:1–21.PubMedCrossRefGoogle Scholar
  26. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382.PubMedCrossRefGoogle Scholar
  27. Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23:9357–9366.PubMedGoogle Scholar
  28. Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613.PubMedGoogle Scholar
  29. Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192.PubMedCrossRefGoogle Scholar
  30. Gage FH, Kempermann G, Palmer T, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266.PubMedCrossRefGoogle Scholar
  31. Galileo DS, Gray GE, Owens GC, Majors J, Sanes JR (1990) Neurons and glia arise from a common progenitor in chicken optic tectum: Demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA 87:458–462.PubMedCrossRefGoogle Scholar
  32. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021.PubMedCrossRefGoogle Scholar
  33. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241.PubMedCrossRefGoogle Scholar
  34. Garcia-Verdugo JM, Ferron S, Flames N, Collado L, Desfilis E, Font E (2002) The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 57:765–775.PubMedCrossRefGoogle Scholar
  35. Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J, Bongarzone ER (2006) Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28:81–91.PubMedCrossRefGoogle Scholar
  36. Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394.PubMedCrossRefGoogle Scholar
  37. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788.PubMedCrossRefGoogle Scholar
  38. Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044.PubMedCrossRefGoogle Scholar
  39. Gritti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, Bjornson CRR, Vescovi AL (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 19:3287–3297.PubMedGoogle Scholar
  40. Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia 51:81–97.PubMedCrossRefGoogle Scholar
  41. Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872.PubMedGoogle Scholar
  42. Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101:3196–3201.PubMedCrossRefGoogle Scholar
  43. His W (1889) Die Neuroblasten und deren Entstehung im embryonalen Mark. Abh kgl sachs Ges Wissensch math phys Kl 15:311–372.Google Scholar
  44. Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685.PubMedCrossRefGoogle Scholar
  45. Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23:2824–2832.PubMedGoogle Scholar
  46. Imura T, Nakano I, Kornblum HI, Sofroniew MV (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53:277–293.PubMedCrossRefGoogle Scholar
  47. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, Vandenberg S, Alvarez-Buylla A (2006) PDGFRIJ -positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199.PubMedCrossRefGoogle Scholar
  48. Jankovski A, Sotelo C (1996) Subventricular zone–olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371:376–396.PubMedCrossRefGoogle Scholar
  49. Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003.PubMedCrossRefGoogle Scholar
  50. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757.PubMedCrossRefGoogle Scholar
  51. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829.PubMedGoogle Scholar
  52. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A 97:13883–13888.PubMedCrossRefGoogle Scholar
  53. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375.PubMedCrossRefGoogle Scholar
  54. Lim DA, Tramontin , AD Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726.PubMedCrossRefGoogle Scholar
  55. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148.PubMedCrossRefGoogle Scholar
  56. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981.PubMedCrossRefGoogle Scholar
  57. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950.PubMedCrossRefGoogle Scholar
  58. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918.PubMedCrossRefGoogle Scholar
  59. Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188.PubMedCrossRefGoogle Scholar
  60. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528–17532.PubMedCrossRefGoogle Scholar
  61. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384.PubMedCrossRefGoogle Scholar
  62. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452.PubMedCrossRefGoogle Scholar
  63. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, Van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082.PubMedCrossRefGoogle Scholar
  64. Morshead CM, Garcia AD, Sofroniew MV, van Der Kooy D (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18:76–84.PubMedCrossRefGoogle Scholar
  65. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720.PubMedCrossRefGoogle Scholar
  66. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173.PubMedGoogle Scholar
  67. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144.PubMedCrossRefGoogle Scholar
  68. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G, II, Jiang L, Kang J, Nedergaard M, Goldman SA (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9:439–447.PubMedCrossRefGoogle Scholar
  69. Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344.PubMedCrossRefGoogle Scholar
  70. Parras CM, Galli R, Britz O, Soares S, Galichet C, Battiste J, Johnson JE, Nakafuku M, Vescovi A, Guillemot F (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. Embo J 23:4495–4505.PubMedCrossRefGoogle Scholar
  71. Pearson BJ, Doe CQ (2003) Regulation of neuroblast competence in Drosophila. Nature 425:624–628.PubMedCrossRefGoogle Scholar
  72. Pearson BJ, Doe CQ (2004) Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20:619–647.PubMedCrossRefGoogle Scholar
  73. Peretto P, Merighi A, Fasolo A, Bonfanti L (1997) Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull 42:9–21.PubMedCrossRefGoogle Scholar
  74. Peretto P, Merighi A, Fasolo A, Bonfanti L (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49:221–243.PubMedCrossRefGoogle Scholar
  75. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765.PubMedCrossRefGoogle Scholar
  76. Privat A (1977) The ependyma and subependymal layer of the young rat: a new contribution with freeze-facture. Neuroscience : 2447–457.CrossRefGoogle Scholar
  77. Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.PubMedCrossRefGoogle Scholar
  78. Russo RE, Fernandez A, Reali C, Radmilovich M, Trujillo-Cenoz O (2004) Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord. J Physiol 560:831–838.PubMedCrossRefGoogle Scholar
  79. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744.PubMedCrossRefGoogle Scholar
  80. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822.PubMedCrossRefGoogle Scholar
  81. Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793.PubMedGoogle Scholar
  82. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160.PubMedGoogle Scholar
  83. Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378.PubMedCrossRefGoogle Scholar
  84. Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE, Temple S (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743–751.PubMedCrossRefGoogle Scholar
  85. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828.PubMedGoogle Scholar
  86. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401.PubMedCrossRefGoogle Scholar
  87. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18.PubMedCrossRefGoogle Scholar
  88. Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814.PubMedCrossRefGoogle Scholar
  89. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335.PubMedCrossRefGoogle Scholar
  90. Temple S (2001) The development of neural stem cells. Nature 414:112–117.PubMedCrossRefGoogle Scholar
  91. Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188.PubMedCrossRefGoogle Scholar
  92. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436.PubMedCrossRefGoogle Scholar
  93. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, Van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19:387–393.PubMedCrossRefGoogle Scholar
  94. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400.PubMedCrossRefGoogle Scholar
  95. Zheng W, Nowakowski RS, Vaccarino FM (2004) Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 26:181–196.PubMedCrossRefGoogle Scholar
  96. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130.PubMedCrossRefGoogle Scholar
  97. Zupanc GK (2006) Neurogenesis and neuronal regeneration in the adult fish brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:649–670.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rebecca A. Ihrie
    • 1
  • Arturo Alvarez-Buylla
    • 1
  1. 1.Department of Neurosurgery and Developmental and Stem Cell Biology Program,University of California San Francisco,San Francisco, CA,

Personalised recommendations