A Role for Glial Cells of the Neuroendocrine Brain in the Central Control of Female Sexual Development

  • Alejandro Lomniczi
  • Sergio R. Ojeda


Glutamine Synthetase Median Eminence Gonadal Steroid GnRH Neuron GnRH Secretion 



α-a-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid


Adenosine 5′-triphosphate


Basic fibroblast growth factor


Carbonic anhydrase


Epidermal growth factor


Prostaglandin E receptor-type 1


Prostaglandin E receptor-type 3


Erythroblastosis B


Follicle-stimulating hormone


γ-Aminobutyric acid


Glutamate dehydrogenase


Gonadotropin hormone-releasing hormone


Glycosylphosphatidyl inositol


Glutamine synthetase


Heparin-binding EGF-like growth factor


Insulin-like growth factor-1




Luteinizing hormone


Metabotropic glutamate receptors


Nitric oxide




Organum vasculosum of the lamina terminalis


Phosphate-activated glutaminase


Prostaglandin E2


Preoptic area


Receptor-like protein tyrosine phosphatase-β


Synaptic cell adhesion molecule


Tumor necrosis factor alpha converting enzyme


Transforming growth factor alpha


Transforming growth factor beta1



This work was supported by grants from the National Institutes of Health HD25123, MH65438, U54 HD18185 through cooperative agreement as part of the Specialized Cooperative Center’s Program in Reproduction and Infertility Research, National Institute of Child Health and Human Development/NIH, and RR00163 for the operation of the Oregon National Primate Research Center.


  1. Adamsky K, Arnold K, Sabanay H, Peles E (2003) Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 116:1279–1289PubMedCrossRefGoogle Scholar
  2. Akiyama T, Saito T, Ogawara H, Toyoshima K, Yamamoto T (1988) Tumor promoter and epidermal growth factor stimulate phosphorylation of the c-erbB-2 gene product in MKN-7 human adenocarcinoma cells. Mol Cell Biol 8:1019–1026PubMedGoogle Scholar
  3. Amateau SK, McCarthy MM (2002) Sexual differentiation of astrocyte morphology in the developing rat preoptic area. J Neuroendocrinol 14:904–910PubMedCrossRefGoogle Scholar
  4. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 22:208–215PubMedCrossRefGoogle Scholar
  5. Barbour B, Szatkowski M, Ingledew N, Attwell D (1989) Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342:918–920PubMedCrossRefGoogle Scholar
  6. Barres BA (1991) New roles for glia. J Neurosci 11:3685–3694PubMedGoogle Scholar
  7. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, von Zastrow ME, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFa. Science 295:2282–2285PubMedCrossRefGoogle Scholar
  8. Beerli RR, Graus-Porta D, Woods-Cook K, Chen X, Yarden Y, Hynes NE (1995) Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol Cell Biol 15:6496–6505PubMedGoogle Scholar
  9. Berg-von der Emde K, Ma YJ, Costa ME, Ojeda SR (1993) Hypothalamic astrocytes respond to transforming growth factor alpha (TGFa) with prostaglandin E2 (PGE2) release. Soc Neurosci Abstr 19:1682Google Scholar
  10. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285PubMedCrossRefGoogle Scholar
  11. Biederer T, Sudhof TC (2001) CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem 276:47869–47876PubMedGoogle Scholar
  12. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531PubMedCrossRefGoogle Scholar
  13. Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20:8012–8020PubMedGoogle Scholar
  14. Blutstein T, Devidze N, Choleris E, Jasnow AM, Pfaff DW, Mong JA (2006) Oestradiol up-regulates glutamine synthetase mRNA and protein expression in the hypothalamus and hippocampus: implications for a role of hormonally responsive glia in amino acid neurotransmission. J Neuroendocrinol 18:692–702PubMedCrossRefGoogle Scholar
  15. Bourguignon J-P, Gérard A, Gonzalez A, Purnelle G, Franchimont P (1995) The role of excitatory amino acids in triggering the onset of puberty. In: Plant TM, Lee PA, eds), pp. The Neurobiology of PubertyJournal of Endocrinology LtdBristol:129–138.Google Scholar
  16. Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11:287–296PubMedCrossRefGoogle Scholar
  17. Burden S, Yarden Y (1997) Neuregulins and their receptors: A versatile signaling module in organogenesis and oncogenesis. Neuron 18:847–855PubMedCrossRefGoogle Scholar
  18. Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265:7709–7712PubMedGoogle Scholar
  19. Carraway KL, Cantley LC (1994) A neu acquaintance for ErbB3 and ErbB4: A role for receptor heterodimerization in growth signaling. Cell 78:5–8PubMedCrossRefGoogle Scholar
  20. Carraway KL, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, Lai C (1997) Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 387:512–516PubMedCrossRefGoogle Scholar
  21. Cashion AB, Smith MJ, Wise PM (2003) The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on proestrus: Relationship to the luteinizing hormone surge and effects of age. Endocrinology 144:274–280PubMedCrossRefGoogle Scholar
  22. Chaban VV, Lakhter AJ, Micevych P (2004) A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 145:3788–3795PubMedCrossRefGoogle Scholar
  23. Chang H, Riese DJ, Gilbert W, Stern DF, McMahan UJ (1997) Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 387:509–516PubMedCrossRefGoogle Scholar
  24. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433PubMedCrossRefGoogle Scholar
  25. Clough RW, Rodriguez-Sierra JF (1983) Synaptic changes in the hypothalamus of the prepubertal female rat administered estrogen. Am J Anat 167:205–214PubMedCrossRefGoogle Scholar
  26. Cotrina ML, Lin JHC, López-García JC, Naus CCG, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844PubMedGoogle Scholar
  27. Cottrell EC, Campbell RE, Han SK, Herbison AE (2006) Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology 147:3652–3661PubMedCrossRefGoogle Scholar
  28. Curtis SW, Washburn T, Sewall C, DiAugustine R, Lindzey J, Couse JF, Korach KS (1996) Physiological coupling of growth factor and steroid receptor signaling pathways: Estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc Natl Acad Sci USA 93:12626–12630PubMedCrossRefGoogle Scholar
  29. DeFazio RA, Heger S, Ojeda SR, Moenter SM (2002) Activation of A-type g-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891PubMedCrossRefGoogle Scholar
  30. De Seranno S, Estrella C, Loyens A, Cornea A, Ojeda SR, Beauvillain SC, Prevot V (2004) Vascular endothelial cells promote acute ependymoglial cell plasticty. J Neurosci 24:10353–10363PubMedCrossRefGoogle Scholar
  31. Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS (1999) Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci USA 96:6235–6240PubMedCrossRefGoogle Scholar
  32. Dungan HM, Clifton DK, Steiner RA (2006) Minireview: Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology 147:1154–1158PubMedCrossRefGoogle Scholar
  33. Dziedzic B, Prevot V, Lomniczi A, Jung H, Cornea A, Ojeda SR (2003) Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates erbB receptor function in astroglial cells of the neuroendocrine brain. J Neurosci 23:915–926PubMedGoogle Scholar
  34. El Majdoubi M, Sahu A, Plant TM (1998a) Effect of estrogen on hypothalamic transforming growth factor alpha and gonadotropin-releasing hormone gene expression in the female rhesus monkey. Neuroendocrinology 67:228–235CrossRefGoogle Scholar
  35. El Majdoubi M, Sahu A, Plant TM (1998b) Pubertal changes in hypothalamic GnRH and related peptide gene expression in the monkey. Soc Neurosci Abstr 24:270Google Scholar
  36. Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296PubMedCrossRefGoogle Scholar
  37. Falls DL (2003) Neuregulins: Functions, forms, and signaling strategies. Exp Cell Res 284:14–30PubMedCrossRefGoogle Scholar
  38. Fellin T, Sul JY, D’Ascenzo M, Takano H, Pascual O, Haydon PG (2006) Bidirectional astrocyte–neuron communication: the many roles of glutamate and ATP. In: Purinergic Signalling in Neuron–Glia InteractionsWileyChichester:208–221. Norvartis Foundation Symposium 276) pp.CrossRefGoogle Scholar
  39. Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436PubMedCrossRefGoogle Scholar
  40. Fields RD, Stevens B (2000) ATP: An extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633PubMedCrossRefGoogle Scholar
  41. Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562PubMedCrossRefGoogle Scholar
  42. Galbiati M, Zanisi M, Messi E, Cavarretta I, Martini L, Melcangi RC (1996) Transforming growth factor-b and astrocytic conditioned medium influence luteinizing hormone-releasing hormone gene expression in the hypothalamic cell line GT1. Endocrinology 137:5605–5609PubMedCrossRefGoogle Scholar
  43. Galbiati M, Martini L, Melcangi RC (2002) Oestrogens, via transforming growth factor a, modulate basic fibroblast growth factor synthesis in hypothalamic astrocytes: In vitro observations. J Neuroendocrinol 14:829–835PubMedCrossRefGoogle Scholar
  44. Garcia-Segura LM, McCarthy MM (2004) Minireview: Role of glia in neuroendocrine function. Endocrinology 145:1082–1086PubMedCrossRefGoogle Scholar
  45. Grumet M (1997) Nr-CAM: A cell adhesion molecule with ligand and receptor functions. Cell Tissue Res 290:423–428PubMedCrossRefGoogle Scholar
  46. Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26:8881–8891PubMedCrossRefGoogle Scholar
  47. Harris KM, Sultan P (1995) Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34:1387–1395PubMedCrossRefGoogle Scholar
  48. Hatton GI, Perlmutter LS, Salm AK, Tweedle CD (1984) Dynamic neuronal-glial interactions in hypothalamus and pituitary: Implications for control of hormone synthesis and release. Peptides 5:121–138PubMedCrossRefGoogle Scholar
  49. Haydon PG (2001) Glia: Listening and talking to the synapse. Nat Rev Neurosci 2:185–193PubMedCrossRefGoogle Scholar
  50. Herbison AE (1998) Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocrine Rev 19:302–330CrossRefGoogle Scholar
  51. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: Astrocytes as stars of the show. Trends Neurosci 27:735–743PubMedCrossRefGoogle Scholar
  52. Hiney JK, Ojeda SR, Dees WL (1991) Insulin-like growth factor-I: A possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology 54:420–423PubMedCrossRefGoogle Scholar
  53. Hirbec H, Martin S, Henley JM (2005) Syntenin is involved in the developmental regulation of neuronal membrane architecture. Mol Cell Neurosci 28:737–746PubMedCrossRefGoogle Scholar
  54. Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352PubMedCrossRefGoogle Scholar
  55. Ignar-Trowbridge DM, Teng CT, Ross KA, Parker MG, Korach KS, McLachlan JA (1993) Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 7:992–998PubMedCrossRefGoogle Scholar
  56. Jung H, Carmel P, Schwartz MS, Witkin JW, Bentele KHP, Westphal M, Piatt JH, Costa ME, Cornea A, Ma YJ, Ojeda SR (1999) Some hypothalamic hamartomas contain transforming growth factor alpha, a puberty-inducing growth factor, but not luteinizing hormone-releasing hormone neurons. J Clin Endocrinol Metab 84:4695–4701PubMedCrossRefGoogle Scholar
  57. Junier M-P, Ma YJ, Costa ME, Hoffman G, Hill DF, Ojeda SR (1991) Transforming growth factor alpha contributes to the mechanism by which hypothalamic injury induces precocious puberty. Proc Natl Acad Sci USA 88:9743–9747PubMedCrossRefGoogle Scholar
  58. Junier M-P, Hill DF, Costa ME, Felder S, Ojeda SR (1993) Hypothalamic lesions that induce female precocious puberty activate glial expression of the epidermal growth factor receptor gene: Differential regulation of alternatively spliced transcripts. J Neurosci 13:703–713PubMedGoogle Scholar
  59. Kalra SP, Crowley WR (1992) Neuropeptide Y: A novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. In: Ganong WF, Martini L, eds), pp. Frontiers in Neuroendocrinology, Vol. 13RavenNew York, NY: 1–46.Google Scholar
  60. Karunagaran D, Tsahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, Seger R, Hynes NE, Yarden Y (1996) ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: Implications for breast cancer. EMBO J 15:254–264PubMedGoogle Scholar
  61. Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, Noda M (1999) Protein tyrosine phosphatase zeta/RPTPbeta interacts with PSD-95/SAP90 family. Brain Res Mol Brain Res 72:47–54PubMedCrossRefGoogle Scholar
  62. King JC, Letourneau RL (1994) Luteinizing hormone-releasing hormone terminals in the median eminence of rats undergo dramatic changes after gonadectomy, as revealed by electron microscopic image analysis. Endocrinology 134:1340–1351PubMedCrossRefGoogle Scholar
  63. King JC, Rubin BS (1996) Recruitment of LHRH neurons and increased access of LHRH terminals to portal capillaries: Integral mechanisms for LH surge induction. Ann d’ Endocrinol (Paris) 57:(Suppl 4)72Google Scholar
  64. Kozlowski GP, Coates PW (1985) Ependymoneuronal specializations between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res 242:301–311PubMedCrossRefGoogle Scholar
  65. Laake JH, Slyngstad TA, Haug FM, Ottersen OP (1995) Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: Immunogold evidence from hippocampal slice cultures. J Neurochem 65:871–881PubMedCrossRefGoogle Scholar
  66. Langub MC, Jr., Watson RE, Jr. (1992) Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: Electron microscopy. Endocrinology 130:364–372PubMedCrossRefGoogle Scholar
  67. Lehre KP, Rusakov DA (2002) Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys J 83:125–134PubMedCrossRefGoogle Scholar
  68. Levine JE, Bauer-Dantoin AC, Besecke LM, Conaghan LA, Legan SJ, Meredith JM, Strobl FJ, Urban JH, Vogelsong KM, Wolfe AM (1991) Neuroendocrine regulation of luteinizing hormone pulse generator in the rat. Rec Prog Horm Res 47:97–153PubMedGoogle Scholar
  69. Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate–glutamine cycle in hippocampal area CA1. J Neurosci 26:8537–8548PubMedCrossRefGoogle Scholar
  70. Lomniczi A, Cornea A, Costa ME, Ojeda SR (2006) Hypothalamic tumor necrosis factor-a converting enzyme (TACE) mediates excitatory amino acid-dependent neuron-to-glia signaling in the neuroendocrine brain. J Neurosci 26:51–62PubMedCrossRefGoogle Scholar
  71. Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC (1994) The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 8:399–413PubMedCrossRefGoogle Scholar
  72. Ma YJ, Junier M-P, Costa ME, Ojeda SR (1992) Transforming growth factor alpha (TGFa) gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 9:657–670PubMedCrossRefGoogle Scholar
  73. Ma YJ, Berg-von der Emde K, Moholt-Siebert M, Hill DF, Ojeda SR (1994a) Region-specific regulation of transforming growth factor a (TGFa) gene expression in astrocytes of the neuroendocrine brain. J Neurosci 14:5644–5651Google Scholar
  74. Ma YJ, Costa ME, Ojeda SR (1994b) Developmental expression of the genes encoding transforming growth factor alpha (TGFa) and its receptor in the hypothalamus of female rhesus macaques. Neuroendocrinology 60:346–359CrossRefGoogle Scholar
  75. Ma YJ, Dissen GA, Merlino G, Coquelin A, Ojeda SR (1994c) Overexpression of a human transforming growth factor alpha (TGFa) transgene reveals a dual antagonistic role of TGFa in female sexual development. Endocrinology 135:1392–1400CrossRefGoogle Scholar
  76. Ma YJ, Hill DF, Junier M-P, Costa ME, Felder SE, Ojeda SR (1994d) Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. Mol Cell Neurosci 5:246–262CrossRefGoogle Scholar
  77. Ma YJ, Berg-von der Emde K, Rage F, Wetsel WC, Ojeda SR (1997) Hypothalamic astrocytes respond to transforming growth factor alpha with secretion of neuroactive substances that stimulate the release of luteinizing hormone-releasing hormone. Endocrinology 138:19–25PubMedCrossRefGoogle Scholar
  78. Ma YJ, Hill DF, Creswick KE, Costa ME, Ojeda SR (1999) Neuregulins signaling via a glial erbB2/erbB4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 19:9913–9927PubMedGoogle Scholar
  79. Mahesh VB, Dhandapani KM, Brann DW (2006) Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol 246:1–9PubMedCrossRefGoogle Scholar
  80. Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94PubMedCrossRefGoogle Scholar
  81. Massague J (1990) Transforming growth factor-a. A model for membrane-anchored growth factors. J Biol Chem 265:21393–21396PubMedGoogle Scholar
  82. Matsumoto A, Arai Y (1977) Precocious puberty and synaptogenesis in the hypothalamic arcuate nucleus in pregnant mare serum gonadotropin (PMSG) treated immature female rats. Brain Res 129:375–378PubMedCrossRefGoogle Scholar
  83. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357PubMedCrossRefGoogle Scholar
  84. McEwen B (2002) Estrogen actions throughout the brain. Recent Prog Horm Res 57:357–384PubMedCrossRefGoogle Scholar
  85. Melcangi RC, Galbiati M, Messi E, Piva F, Martini L, Motta M (1995) Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1–1: Is transforming growth factor-b the principle involved?. Endocrinology 136:679–686PubMedCrossRefGoogle Scholar
  86. Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 97:2603–2608PubMedCrossRefGoogle Scholar
  87. Milner TA, McEwen BS, Hayashi S, Li CJ, Reagan LP, Alves SE (2001) Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol 429:355–371PubMedCrossRefGoogle Scholar
  88. Miyake A, Tasaka K, Otsuka S, Kohmura H, Wakimoto H, Aono T (1985) Epidermal growth factor stimulates secretion of rat pituitary luteinizing hormone in vitro. Acta Endocrinol 108:175–178PubMedGoogle Scholar
  89. Mong JA, Blutstein T (2006) Estradiol modulation of astrocytic form and function: Implications for hormonal control of synaptic communication. Neuroscience 138:967–975PubMedCrossRefGoogle Scholar
  90. Mong JA, McCarthy MM (1999) Steroid-induced developmental plasticity in hypothalamic astrocytes: Implications for synaptic patterning. J Neurobiol 40:602–619PubMedCrossRefGoogle Scholar
  91. Mong JA, Glaser E, McCarthy MM (1999) Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J Neurosci 19:1464–1472PubMedGoogle Scholar
  92. Montero JC, Yuste L, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella A (2000) Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-alpha-converting enzyme. Mol Cell Neurosci 16:631–648PubMedCrossRefGoogle Scholar
  93. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d. -serine Proc Natl Acad Sci USA 102:5606–5611PubMedCrossRefGoogle Scholar
  94. Mungenast AE, Parent A, Chen SS, Goodlett D, Aebersold R, Corfas G, Ojeda SR (2003) The synaptic adhesion molecule SynCAM is associated with ERBB4 dysregulation in the hypothalamus of mice with a delayed onset of puberty. Society for Neuroscience, Washington, DC: Online Program No. 281, 20, 2003 Abstract Viewer.Google Scholar
  95. Naftolin F, Leranth C, Garcia-Segura LM (1992) Ultrastructural changes in hypothalamic cells during estrogen-induced gonadotrophin feedback. Neuroprotocols 1:16–26CrossRefGoogle Scholar
  96. Narumiya S (1994) Prostanoid receptors: Structure, function, and distribution. Ann N Y Acad Sci 744:126–138PubMedCrossRefGoogle Scholar
  97. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26:523–530PubMedCrossRefGoogle Scholar
  98. Newman EA (2003) New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci 26:536–542PubMedCrossRefGoogle Scholar
  99. Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340PubMedCrossRefGoogle Scholar
  100. Ojeda SR (1994) The neurobiology of mammalian puberty: Has the contribution of glial cells been underestimated?. J NIH Res 6:51–56Google Scholar
  101. Ojeda SR, Skinner MK (2006) Puberty in the rat. In: Neill JD, ed), pp. The Physiology of Reproduction,3rd editionAcademic/ElsevierSan Diego, CA/Amsterdam: 2061–2126.Google Scholar
  102. Ojeda SR, Terasawa E (2002) Neuroendocrine regulation of puberty. In: Pfaff D, Arnold A, Etgen A, Fahrbach S, Moss R, Rubin R, eds), pp. Hormones, Brain and Behavior, Vol. 4ElsevierNew York, NY:589–659.CrossRefGoogle Scholar
  103. Ojeda SR, Urbanski HF (1994) Puberty in the rat. In: Knobil E, Neill JD, eds), pp. The Physiology of Reproduction, 2nd Edition, Vol. 2RavenNew York, NY:363–409.Google Scholar
  104. Ojeda SR, Urbanski HF, Costa ME, Hill DF, Moholt-Siebert M (1990) Involvement of transforming growth factor a in the release of luteinizing hormone-releasing hormone from the developing female hypothalamus. Proc Natl Acad Sci USA 87:9698–9702PubMedCrossRefGoogle Scholar
  105. Ojeda SR, Ma YJ, Lee BJ, Prevot V (2000) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Rec Prog Horm Res 55:197–224PubMedGoogle Scholar
  106. Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A (2003) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann Med 35:244–255PubMedCrossRefGoogle Scholar
  107. Olmos G, Aguilera P, Tranque P, Naftolin F, Garcia-Segura LM (1987) Estrogen-induced synaptic remodelling in adult rat brain is accompanied by the reorganization of neuronal membranes. Brain Res 425:57–64PubMedCrossRefGoogle Scholar
  108. Olson BR, Scott DC, Wetsel WC, Elliot SJ, Tomic M, Stojilkovic S, Nieman LK, Wray S (1995) Effects of insulin-like growth factors I and II and insulin on the immortalized hypothalamic GT1-7 cell line. Neuroendocrinology 62:155–165PubMedCrossRefGoogle Scholar
  109. Parent AS, Mungenast A, Lomniczi A, Peles E, Sandau U, Ojeda SR (2007) A contactin–RPTPb complex mediates adhesive communication between astrogial cells and GnRH neurons. J Neuroendocrinol 19:847–859PubMedCrossRefGoogle Scholar
  110. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte–neuron signalling. Nature 369:744–747PubMedCrossRefGoogle Scholar
  111. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+. oscillations in situ drive NMDAR-mediated neuronal excitation Nat Neurosci 4:803–812PubMedCrossRefGoogle Scholar
  112. Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD, Grumet M, Schlessinger J (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase b is a functional ligand for the axonal cell recognition molecule contactin. Cell 82:251–260PubMedCrossRefGoogle Scholar
  113. Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R, Plowman GD, Schlessinger J (1997) Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein–protein interactions. EMBO J 16:978–988PubMedCrossRefGoogle Scholar
  114. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Koslosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284PubMedCrossRefGoogle Scholar
  115. Plant TM (2002) Neurophysiology of puberty. J Adolesc Health 31:185–191PubMedCrossRefGoogle Scholar
  116. Plant TM, Witchel SF (2006) Puberty in nonhuman primates and humans. In: Neill JD, ed), pp. The Physiology of Reproduction,3rd EditionAcademic/ElsevierSan Diego, CA/Amsterdam: 2177–2230.Google Scholar
  117. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888PubMedGoogle Scholar
  118. Prevot V (2002) Glial–neuronal–endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol 14:247–255PubMedCrossRefGoogle Scholar
  119. Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: Implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94:809–819PubMedCrossRefGoogle Scholar
  120. Prevot V, Cornea A, Mungenast A, Smiley G, Ojeda SR (2003a) Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor b1 release via prostaglandin E2 production and induces cell plasticity. J Neuroscience 23:10622–10632Google Scholar
  121. Prevot V, Rio C, Cho GJ, Lomniczi A, Heger S, Neville CM, Rosenthal NA, Ojeda SR, Corfas G (2003b) Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J Neurosci 23:230–239Google Scholar
  122. Prevot V, Lomniczi A, Corfas G, Ojeda SR (2005) ErbB-1 and erbB-4 receptors act in concert to facilitate both female sexual development and mature reproductive function. Endocrinology 146:1465–1472PubMedCrossRefGoogle Scholar
  123. Rage F, Hill DF, Sena-Esteves M, Breakefield XO, Coffey RJ, Costa ME, McCann SM, Ojeda SR (1997a) Targeting transforming growth factor a expression to discrete loci of the neuroendocrine brain induces female sexual precocity. Proc Natl Acad Sci USA 94:2735–2740CrossRefGoogle Scholar
  124. Rage F, Lee BJ, Ma YJ, Ojeda SR (1997b) Estradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-to-neuron signaling pathway. J Neurosci 17:9145–9156Google Scholar
  125. Riese DJ, Bermingham Y, van Raaij TM, Buckley S, Plowman GD, Stern DF (1996a) Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene 12:345–353Google Scholar
  126. Riese DJ, Kim ED, Elenius K, Buckley S, Klagsbrun M, Plowman GD, Stern DF (1996b) The epidermal growth factor receptor couples transforming growth factor-a heparin-binding epidermal growth factor-like factor, and amphiregulin to neu, ErbB-3 and ErbB-4. J Biol Chem 271:20047–20052CrossRefGoogle Scholar
  127. Rimer M (2003) Neuregulins: Primary or secondary signals for the control of synapse-specific gene expression. J Neurocytol 32:665–675PubMedCrossRefGoogle Scholar
  128. Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: A key component of brain–endocrine interaction. Int Rev Cytol 247:89–164PubMedCrossRefGoogle Scholar
  129. Roth C, Leonhardt S, Theiling K, Lakomek M, Jarry H, Wuttke W (1998) Ontogeny of the GnRH-, glutaminase- and glutamate decarboxylase-gene expression in the hypothalamus of female rats. Brain Res Dev Brain Res 110:105–114PubMedCrossRefGoogle Scholar
  130. Roth CL, McCormack AL, Lomniczi A, Mungenast AE, Ojeda SR (2006) Quantitative proteomics identifies a major change in glial glutamate metabolism at the time of female puberty. Mol Cell Endocrinol 254–255:51–59PubMedCrossRefGoogle Scholar
  131. Sahin U, Weskamp G, Kelly K, Zhou H-M, Higashiyama S, Peshon J, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779PubMedCrossRefGoogle Scholar
  132. Sakurai T, Lustig M, Nativ M, Hemperly JJ, Schlessinger J, Peles E, Grumet M (1997) Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J Cell Biol 136:907–918PubMedCrossRefGoogle Scholar
  133. Shelly M, Pinkas-Kramarski R, Guarino BC, Waterman H, Wang L-M, Lyass L, Alimandi M, Kuo A, Bacus SS, Pierce HJ, Andrews GC, Yarden Y (1998) Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem 273:10496–10505PubMedCrossRefGoogle Scholar
  134. Silverman A-J, Livne I, Witkin JW (1994) The gonadotropin-releasing hormone (GnRH), neuronal systems: Immunocytochemistry and in situ hybridization. In: Knobil E, Neill JD, eds), pp. The Physiology of Reproduction, 2nd Edition, Vol. 1RavenNew York, NY: 1683–1709.Google Scholar
  135. Stella N, Tencé M, Glowinski J, Prémont J (1994) Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci 14:568–575PubMedGoogle Scholar
  136. Terasawa E (1995) Mechanisms controlling the onset of puberty in primates: The role of GABAergic neurons. In: Plant TM, Lee PA, eds), pp The Neurobiology of PubertyJournal of Endocrinology LtdBristol:139–151.Google Scholar
  137. E Terasawa (2002) Role of ATP in synchronization of Ca2+ oscillations in LHRH neurons in vitroGoogle Scholar
  138. Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 22:111–151PubMedCrossRefGoogle Scholar
  139. Terasawa E, Keen KL, Grendell RL, Golos TG (2005) Possible role of 5′-adenosine triphosphate in synchronization of Ca2+. oscillations in primate luteinizing hormone-releasing hormone neurons Mol Endocrinol 19:2736–2747PubMedCrossRefGoogle Scholar
  140. Tsai P-S, Werner S, Weiner RI (1995) Basic fibroblast growth factor is a neurotropic factor in GT1 gonadotropin-releasing hormone neuronal cell lines. Endocrinology 136:3831–3838PubMedCrossRefGoogle Scholar
  141. Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI (2005) Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol Endocrinol 19:225–236PubMedCrossRefGoogle Scholar
  142. Tzahar E, Pinkas-Kramarski R, Moyer JD, Klapper LN, Alroy I, Levkowitz G, Shelly M, Henis S, Eisenstein M, Ratzkin BJ, Sela M, Andrews GC, Yarden Y (1997) Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J 16:4938–4950PubMedCrossRefGoogle Scholar
  143. Voigt P, Ma YJ, Gonzalez D, Fahrenbach WH, Wetsel WC, Berg-von der Emde K, Hill DF, Taylor KG, Costa ME, Seidah NG, Ojeda SR (1996) Neural and glial-mediated effects of growth factors acting via tyrosine kinase receptors on LHRH neurons. Endocrinology 137:2593–2605PubMedCrossRefGoogle Scholar
  144. Wada T, Qian X, Greene MI (1990) Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell 61:1339–1347PubMedCrossRefGoogle Scholar
  145. Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A (1995) Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 14:4267–4275PubMedGoogle Scholar
  146. Wetsel WC, Hill DF, Ojeda SR (1996) Basic fibroblast growth factor regulates the conversion of pro-luteinizing hormone-releasing hormone (LHRH) to LHRH in immortalized hypothalamic neurons. Endocrinology 137:2606–2616PubMedCrossRefGoogle Scholar
  147. Witkin JW, Ferin M, Popilskis SJ, Silverman A-J (1991) Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: Synaptic input and glial apposition. Endocrinology 129:1083–1092PubMedCrossRefGoogle Scholar
  148. Witkin JW, O’Sullivan H, Ferin M (1995) Glial ensheathment of GnRH neurons in pubertal female rhesus macaques. J Neuroendocrinol 7:665–671PubMedCrossRefGoogle Scholar
  149. Zhang K, Sun J, Liu N, Wen D, Chang D, Thomason A, Yoshinaga SK (1996) Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J Biol Chem 271:3884–3890PubMedCrossRefGoogle Scholar
  150. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ (1997) Neuregulin-3 (NGR3): A novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 94:9562–9567PubMedCrossRefGoogle Scholar
  151. Zimmermann P (1982) Estrogen-dependent changes in the functional interrelationships among neurons, ependymal cells and glial cells of the arcuate nucleus. Cytometric studies in the female albino mouse. Cell Tissue Res 227:113–128PubMedCrossRefGoogle Scholar
  152. Zisch AH, D’Alessandri L, Amrein K, Ranscht B, Winterhalter KH, Vaughan L (1995) The glypiated neuronal cell adhesion molecule contactin/F11 complexes with src-family protein tyrosine kinase Fyn. Mol Cell Neurosci 6:263–279PubMedCrossRefGoogle Scholar
  153. Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alejandro Lomniczi
    • 1
  • Sergio R. Ojeda
    • 1
  1. 1.Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityUSA

Personalised recommendations