Skip to main content

A Role for Glial Cells of the Neuroendocrine Brain in the Central Control of Female Sexual Development

  • Chapter
  • First Online:
Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-a-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid

ATP:

Adenosine 5′-triphosphate

bFGF:

Basic fibroblast growth factor

CAH:

Carbonic anhydrase

EGF:

Epidermal growth factor

EP1:

Prostaglandin E receptor-type 1

EP3:

Prostaglandin E receptor-type 3

ErbB:

Erythroblastosis B

FSH:

Follicle-stimulating hormone

GABA:

γ-Aminobutyric acid

GDH:

Glutamate dehydrogenase

GnRH:

Gonadotropin hormone-releasing hormone

GPI:

Glycosylphosphatidyl inositol

GS:

Glutamine synthetase

HB-EGF:

Heparin-binding EGF-like growth factor

IGF-1:

Insulin-like growth factor-1

KO:

Knockout

LH:

Luteinizing hormone

mGluRs:

Metabotropic glutamate receptors

NO:

Nitric oxide

NRGs:

Neuregulins

OVLT:

Organum vasculosum of the lamina terminalis

PaG:

Phosphate-activated glutaminase

PGE2 :

Prostaglandin E2

POA:

Preoptic area

RPTPβ:

Receptor-like protein tyrosine phosphatase-β

SynCAM:

Synaptic cell adhesion molecule

TACE:

Tumor necrosis factor alpha converting enzyme

TGFα:

Transforming growth factor alpha

TGFβ1:

Transforming growth factor beta1

References

  • Adamsky K, Arnold K, Sabanay H, Peles E (2003) Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 116:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Akiyama T, Saito T, Ogawara H, Toyoshima K, Yamamoto T (1988) Tumor promoter and epidermal growth factor stimulate phosphorylation of the c-erbB-2 gene product in MKN-7 human adenocarcinoma cells. Mol Cell Biol 8:1019–1026

    PubMed  CAS  Google Scholar 

  • Amateau SK, McCarthy MM (2002) Sexual differentiation of astrocyte morphology in the developing rat preoptic area. J Neuroendocrinol 14:904–910

    Article  PubMed  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  • Barbour B, Szatkowski M, Ingledew N, Attwell D (1989) Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342:918–920

    Article  PubMed  CAS  Google Scholar 

  • Barres BA (1991) New roles for glia. J Neurosci 11:3685–3694

    PubMed  CAS  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, von Zastrow ME, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFa. Science 295:2282–2285

    Article  PubMed  CAS  Google Scholar 

  • Beerli RR, Graus-Porta D, Woods-Cook K, Chen X, Yarden Y, Hynes NE (1995) Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol Cell Biol 15:6496–6505

    PubMed  CAS  Google Scholar 

  • Berg-von der Emde K, Ma YJ, Costa ME, Ojeda SR (1993) Hypothalamic astrocytes respond to transforming growth factor alpha (TGFa) with prostaglandin E2 (PGE2) release. Soc Neurosci Abstr 19:1682

    Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Sudhof TC (2001) CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem 276:47869–47876

    PubMed  CAS  Google Scholar 

  • Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20:8012–8020

    PubMed  CAS  Google Scholar 

  • Blutstein T, Devidze N, Choleris E, Jasnow AM, Pfaff DW, Mong JA (2006) Oestradiol up-regulates glutamine synthetase mRNA and protein expression in the hypothalamus and hippocampus: implications for a role of hormonally responsive glia in amino acid neurotransmission. J Neuroendocrinol 18:692–702

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon J-P, Gérard A, Gonzalez A, Purnelle G, Franchimont P (1995) The role of excitatory amino acids in triggering the onset of puberty. In: Plant TM, Lee PA, eds), pp. The Neurobiology of PubertyJournal of Endocrinology LtdBristol:129–138.

    Google Scholar 

  • Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11:287–296

    Article  PubMed  CAS  Google Scholar 

  • Burden S, Yarden Y (1997) Neuregulins and their receptors: A versatile signaling module in organogenesis and oncogenesis. Neuron 18:847–855

    Article  PubMed  CAS  Google Scholar 

  • Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265:7709–7712

    PubMed  CAS  Google Scholar 

  • Carraway KL, Cantley LC (1994) A neu acquaintance for ErbB3 and ErbB4: A role for receptor heterodimerization in growth signaling. Cell 78:5–8

    Article  PubMed  CAS  Google Scholar 

  • Carraway KL, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, Lai C (1997) Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 387:512–516

    Article  PubMed  CAS  Google Scholar 

  • Cashion AB, Smith MJ, Wise PM (2003) The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on proestrus: Relationship to the luteinizing hormone surge and effects of age. Endocrinology 144:274–280

    Article  PubMed  CAS  Google Scholar 

  • Chaban VV, Lakhter AJ, Micevych P (2004) A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 145:3788–3795

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Riese DJ, Gilbert W, Stern DF, McMahan UJ (1997) Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 387:509–516

    Article  PubMed  CAS  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  PubMed  CAS  Google Scholar 

  • Clough RW, Rodriguez-Sierra JF (1983) Synaptic changes in the hypothalamus of the prepubertal female rat administered estrogen. Am J Anat 167:205–214

    Article  PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JHC, López-García JC, Naus CCG, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  • Cottrell EC, Campbell RE, Han SK, Herbison AE (2006) Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology 147:3652–3661

    Article  PubMed  CAS  Google Scholar 

  • Curtis SW, Washburn T, Sewall C, DiAugustine R, Lindzey J, Couse JF, Korach KS (1996) Physiological coupling of growth factor and steroid receptor signaling pathways: Estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc Natl Acad Sci USA 93:12626–12630

    Article  PubMed  CAS  Google Scholar 

  • DeFazio RA, Heger S, Ojeda SR, Moenter SM (2002) Activation of A-type g-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891

    Article  PubMed  CAS  Google Scholar 

  • De Seranno S, Estrella C, Loyens A, Cornea A, Ojeda SR, Beauvillain SC, Prevot V (2004) Vascular endothelial cells promote acute ependymoglial cell plasticty. J Neurosci 24:10353–10363

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS (1999) Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci USA 96:6235–6240

    Article  PubMed  CAS  Google Scholar 

  • Dungan HM, Clifton DK, Steiner RA (2006) Minireview: Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology 147:1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Dziedzic B, Prevot V, Lomniczi A, Jung H, Cornea A, Ojeda SR (2003) Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates erbB receptor function in astroglial cells of the neuroendocrine brain. J Neurosci 23:915–926

    PubMed  CAS  Google Scholar 

  • El Majdoubi M, Sahu A, Plant TM (1998a) Effect of estrogen on hypothalamic transforming growth factor alpha and gonadotropin-releasing hormone gene expression in the female rhesus monkey. Neuroendocrinology 67:228–235

    Article  CAS  Google Scholar 

  • El Majdoubi M, Sahu A, Plant TM (1998b) Pubertal changes in hypothalamic GnRH and related peptide gene expression in the monkey. Soc Neurosci Abstr 24:270

    Google Scholar 

  • Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    Article  PubMed  CAS  Google Scholar 

  • Falls DL (2003) Neuregulins: Functions, forms, and signaling strategies. Exp Cell Res 284:14–30

    Article  PubMed  CAS  Google Scholar 

  • Fellin T, Sul JY, D’Ascenzo M, Takano H, Pascual O, Haydon PG (2006) Bidirectional astrocyte–neuron communication: the many roles of glutamate and ATP. In: Purinergic Signalling in Neuron–Glia InteractionsWileyChichester:208–221. Norvartis Foundation Symposium 276) pp.

    Chapter  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens B (2000) ATP: An extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562

    Article  PubMed  CAS  Google Scholar 

  • Galbiati M, Zanisi M, Messi E, Cavarretta I, Martini L, Melcangi RC (1996) Transforming growth factor-b and astrocytic conditioned medium influence luteinizing hormone-releasing hormone gene expression in the hypothalamic cell line GT1. Endocrinology 137:5605–5609

    Article  PubMed  CAS  Google Scholar 

  • Galbiati M, Martini L, Melcangi RC (2002) Oestrogens, via transforming growth factor a, modulate basic fibroblast growth factor synthesis in hypothalamic astrocytes: In vitro observations. J Neuroendocrinol 14:829–835

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Segura LM, McCarthy MM (2004) Minireview: Role of glia in neuroendocrine function. Endocrinology 145:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Grumet M (1997) Nr-CAM: A cell adhesion molecule with ligand and receptor functions. Cell Tissue Res 290:423–428

    Article  PubMed  CAS  Google Scholar 

  • Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26:8881–8891

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Sultan P (1995) Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Hatton GI, Perlmutter LS, Salm AK, Tweedle CD (1984) Dynamic neuronal-glial interactions in hypothalamus and pituitary: Implications for control of hormone synthesis and release. Peptides 5:121–138

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG (2001) Glia: Listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  • Herbison AE (1998) Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocrine Rev 19:302–330

    Article  CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: Astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  • Hiney JK, Ojeda SR, Dees WL (1991) Insulin-like growth factor-I: A possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology 54:420–423

    Article  PubMed  CAS  Google Scholar 

  • Hirbec H, Martin S, Henley JM (2005) Syntenin is involved in the developmental regulation of neuronal membrane architecture. Mol Cell Neurosci 28:737–746

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352

    Article  PubMed  CAS  Google Scholar 

  • Ignar-Trowbridge DM, Teng CT, Ross KA, Parker MG, Korach KS, McLachlan JA (1993) Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 7:992–998

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Carmel P, Schwartz MS, Witkin JW, Bentele KHP, Westphal M, Piatt JH, Costa ME, Cornea A, Ma YJ, Ojeda SR (1999) Some hypothalamic hamartomas contain transforming growth factor alpha, a puberty-inducing growth factor, but not luteinizing hormone-releasing hormone neurons. J Clin Endocrinol Metab 84:4695–4701

    Article  PubMed  CAS  Google Scholar 

  • Junier M-P, Ma YJ, Costa ME, Hoffman G, Hill DF, Ojeda SR (1991) Transforming growth factor alpha contributes to the mechanism by which hypothalamic injury induces precocious puberty. Proc Natl Acad Sci USA 88:9743–9747

    Article  PubMed  CAS  Google Scholar 

  • Junier M-P, Hill DF, Costa ME, Felder S, Ojeda SR (1993) Hypothalamic lesions that induce female precocious puberty activate glial expression of the epidermal growth factor receptor gene: Differential regulation of alternatively spliced transcripts. J Neurosci 13:703–713

    PubMed  CAS  Google Scholar 

  • Kalra SP, Crowley WR (1992) Neuropeptide Y: A novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. In: Ganong WF, Martini L, eds), pp. Frontiers in Neuroendocrinology, Vol. 13RavenNew York, NY: 1–46.

    Google Scholar 

  • Karunagaran D, Tsahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, Seger R, Hynes NE, Yarden Y (1996) ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: Implications for breast cancer. EMBO J 15:254–264

    PubMed  CAS  Google Scholar 

  • Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, Noda M (1999) Protein tyrosine phosphatase zeta/RPTPbeta interacts with PSD-95/SAP90 family. Brain Res Mol Brain Res 72:47–54

    Article  PubMed  CAS  Google Scholar 

  • King JC, Letourneau RL (1994) Luteinizing hormone-releasing hormone terminals in the median eminence of rats undergo dramatic changes after gonadectomy, as revealed by electron microscopic image analysis. Endocrinology 134:1340–1351

    Article  PubMed  CAS  Google Scholar 

  • King JC, Rubin BS (1996) Recruitment of LHRH neurons and increased access of LHRH terminals to portal capillaries: Integral mechanisms for LH surge induction. Ann d’ Endocrinol (Paris) 57:(Suppl 4)72

    Google Scholar 

  • Kozlowski GP, Coates PW (1985) Ependymoneuronal specializations between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res 242:301–311

    Article  PubMed  CAS  Google Scholar 

  • Laake JH, Slyngstad TA, Haug FM, Ottersen OP (1995) Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: Immunogold evidence from hippocampal slice cultures. J Neurochem 65:871–881

    Article  PubMed  CAS  Google Scholar 

  • Langub MC, Jr., Watson RE, Jr. (1992) Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: Electron microscopy. Endocrinology 130:364–372

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Rusakov DA (2002) Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys J 83:125–134

    Article  PubMed  CAS  Google Scholar 

  • Levine JE, Bauer-Dantoin AC, Besecke LM, Conaghan LA, Legan SJ, Meredith JM, Strobl FJ, Urban JH, Vogelsong KM, Wolfe AM (1991) Neuroendocrine regulation of luteinizing hormone pulse generator in the rat. Rec Prog Horm Res 47:97–153

    PubMed  CAS  Google Scholar 

  • Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate–glutamine cycle in hippocampal area CA1. J Neurosci 26:8537–8548

    Article  PubMed  CAS  Google Scholar 

  • Lomniczi A, Cornea A, Costa ME, Ojeda SR (2006) Hypothalamic tumor necrosis factor-a converting enzyme (TACE) mediates excitatory amino acid-dependent neuron-to-glia signaling in the neuroendocrine brain. J Neurosci 26:51–62

    Article  PubMed  CAS  Google Scholar 

  • Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC (1994) The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 8:399–413

    Article  PubMed  CAS  Google Scholar 

  • Ma YJ, Junier M-P, Costa ME, Ojeda SR (1992) Transforming growth factor alpha (TGFa) gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 9:657–670

    Article  PubMed  CAS  Google Scholar 

  • Ma YJ, Berg-von der Emde K, Moholt-Siebert M, Hill DF, Ojeda SR (1994a) Region-specific regulation of transforming growth factor a (TGFa) gene expression in astrocytes of the neuroendocrine brain. J Neurosci 14:5644–5651

    CAS  Google Scholar 

  • Ma YJ, Costa ME, Ojeda SR (1994b) Developmental expression of the genes encoding transforming growth factor alpha (TGFa) and its receptor in the hypothalamus of female rhesus macaques. Neuroendocrinology 60:346–359

    Article  CAS  Google Scholar 

  • Ma YJ, Dissen GA, Merlino G, Coquelin A, Ojeda SR (1994c) Overexpression of a human transforming growth factor alpha (TGFa) transgene reveals a dual antagonistic role of TGFa in female sexual development. Endocrinology 135:1392–1400

    Article  CAS  Google Scholar 

  • Ma YJ, Hill DF, Junier M-P, Costa ME, Felder SE, Ojeda SR (1994d) Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. Mol Cell Neurosci 5:246–262

    Article  CAS  Google Scholar 

  • Ma YJ, Berg-von der Emde K, Rage F, Wetsel WC, Ojeda SR (1997) Hypothalamic astrocytes respond to transforming growth factor alpha with secretion of neuroactive substances that stimulate the release of luteinizing hormone-releasing hormone. Endocrinology 138:19–25

    Article  PubMed  CAS  Google Scholar 

  • Ma YJ, Hill DF, Creswick KE, Costa ME, Ojeda SR (1999) Neuregulins signaling via a glial erbB2/erbB4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 19:9913–9927

    PubMed  CAS  Google Scholar 

  • Mahesh VB, Dhandapani KM, Brann DW (2006) Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol 246:1–9

    Article  PubMed  CAS  Google Scholar 

  • Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    Article  PubMed  CAS  Google Scholar 

  • Massague J (1990) Transforming growth factor-a. A model for membrane-anchored growth factors. J Biol Chem 265:21393–21396

    PubMed  CAS  Google Scholar 

  • Matsumoto A, Arai Y (1977) Precocious puberty and synaptogenesis in the hypothalamic arcuate nucleus in pregnant mare serum gonadotropin (PMSG) treated immature female rats. Brain Res 129:375–378

    Article  PubMed  CAS  Google Scholar 

  • Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  PubMed  CAS  Google Scholar 

  • McEwen B (2002) Estrogen actions throughout the brain. Recent Prog Horm Res 57:357–384

    Article  PubMed  CAS  Google Scholar 

  • Melcangi RC, Galbiati M, Messi E, Piva F, Martini L, Motta M (1995) Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1–1: Is transforming growth factor-b the principle involved?. Endocrinology 136:679–686

    Article  PubMed  CAS  Google Scholar 

  • Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 97:2603–2608

    Article  PubMed  CAS  Google Scholar 

  • Milner TA, McEwen BS, Hayashi S, Li CJ, Reagan LP, Alves SE (2001) Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol 429:355–371

    Article  PubMed  CAS  Google Scholar 

  • Miyake A, Tasaka K, Otsuka S, Kohmura H, Wakimoto H, Aono T (1985) Epidermal growth factor stimulates secretion of rat pituitary luteinizing hormone in vitro. Acta Endocrinol 108:175–178

    PubMed  CAS  Google Scholar 

  • Mong JA, Blutstein T (2006) Estradiol modulation of astrocytic form and function: Implications for hormonal control of synaptic communication. Neuroscience 138:967–975

    Article  PubMed  CAS  Google Scholar 

  • Mong JA, McCarthy MM (1999) Steroid-induced developmental plasticity in hypothalamic astrocytes: Implications for synaptic patterning. J Neurobiol 40:602–619

    Article  PubMed  CAS  Google Scholar 

  • Mong JA, Glaser E, McCarthy MM (1999) Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J Neurosci 19:1464–1472

    PubMed  CAS  Google Scholar 

  • Montero JC, Yuste L, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella A (2000) Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-alpha-converting enzyme. Mol Cell Neurosci 16:631–648

    Article  PubMed  CAS  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d. -serine Proc Natl Acad Sci USA 102:5606–5611

    Article  PubMed  CAS  Google Scholar 

  • Mungenast AE, Parent A, Chen SS, Goodlett D, Aebersold R, Corfas G, Ojeda SR (2003) The synaptic adhesion molecule SynCAM is associated with ERBB4 dysregulation in the hypothalamus of mice with a delayed onset of puberty. Society for Neuroscience, Washington, DC: Online Program No. 281, 20, 2003 Abstract Viewer.

    Google Scholar 

  • Naftolin F, Leranth C, Garcia-Segura LM (1992) Ultrastructural changes in hypothalamic cells during estrogen-induced gonadotrophin feedback. Neuroprotocols 1:16–26

    Article  CAS  Google Scholar 

  • Narumiya S (1994) Prostanoid receptors: Structure, function, and distribution. Ann N Y Acad Sci 744:126–138

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  • Newman EA (2003) New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci 26:536–542

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR (1994) The neurobiology of mammalian puberty: Has the contribution of glial cells been underestimated?. J NIH Res 6:51–56

    Google Scholar 

  • Ojeda SR, Skinner MK (2006) Puberty in the rat. In: Neill JD, ed), pp. The Physiology of Reproduction,3rd editionAcademic/ElsevierSan Diego, CA/Amsterdam: 2061–2126.

    Google Scholar 

  • Ojeda SR, Terasawa E (2002) Neuroendocrine regulation of puberty. In: Pfaff D, Arnold A, Etgen A, Fahrbach S, Moss R, Rubin R, eds), pp. Hormones, Brain and Behavior, Vol. 4ElsevierNew York, NY:589–659.

    Chapter  Google Scholar 

  • Ojeda SR, Urbanski HF (1994) Puberty in the rat. In: Knobil E, Neill JD, eds), pp. The Physiology of Reproduction, 2nd Edition, Vol. 2RavenNew York, NY:363–409.

    Google Scholar 

  • Ojeda SR, Urbanski HF, Costa ME, Hill DF, Moholt-Siebert M (1990) Involvement of transforming growth factor a in the release of luteinizing hormone-releasing hormone from the developing female hypothalamus. Proc Natl Acad Sci USA 87:9698–9702

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Ma YJ, Lee BJ, Prevot V (2000) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Rec Prog Horm Res 55:197–224

    PubMed  CAS  Google Scholar 

  • Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A (2003) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann Med 35:244–255

    Article  PubMed  Google Scholar 

  • Olmos G, Aguilera P, Tranque P, Naftolin F, Garcia-Segura LM (1987) Estrogen-induced synaptic remodelling in adult rat brain is accompanied by the reorganization of neuronal membranes. Brain Res 425:57–64

    Article  PubMed  CAS  Google Scholar 

  • Olson BR, Scott DC, Wetsel WC, Elliot SJ, Tomic M, Stojilkovic S, Nieman LK, Wray S (1995) Effects of insulin-like growth factors I and II and insulin on the immortalized hypothalamic GT1-7 cell line. Neuroendocrinology 62:155–165

    Article  PubMed  CAS  Google Scholar 

  • Parent AS, Mungenast A, Lomniczi A, Peles E, Sandau U, Ojeda SR (2007) A contactin–RPTPb complex mediates adhesive communication between astrogial cells and GnRH neurons. J Neuroendocrinol 19:847–859

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte–neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+. oscillations in situ drive NMDAR-mediated neuronal excitation Nat Neurosci 4:803–812

    Article  PubMed  CAS  Google Scholar 

  • Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD, Grumet M, Schlessinger J (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase b is a functional ligand for the axonal cell recognition molecule contactin. Cell 82:251–260

    Article  PubMed  CAS  Google Scholar 

  • Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R, Plowman GD, Schlessinger J (1997) Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein–protein interactions. EMBO J 16:978–988

    Article  PubMed  CAS  Google Scholar 

  • Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Koslosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284

    Article  PubMed  CAS  Google Scholar 

  • Plant TM (2002) Neurophysiology of puberty. J Adolesc Health 31:185–191

    Article  PubMed  Google Scholar 

  • Plant TM, Witchel SF (2006) Puberty in nonhuman primates and humans. In: Neill JD, ed), pp. The Physiology of Reproduction,3rd EditionAcademic/ElsevierSan Diego, CA/Amsterdam: 2177–2230.

    Google Scholar 

  • Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    PubMed  CAS  Google Scholar 

  • Prevot V (2002) Glial–neuronal–endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol 14:247–255

    Article  PubMed  CAS  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: Implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94:809–819

    Article  PubMed  CAS  Google Scholar 

  • Prevot V, Cornea A, Mungenast A, Smiley G, Ojeda SR (2003a) Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor b1 release via prostaglandin E2 production and induces cell plasticity. J Neuroscience 23:10622–10632

    CAS  Google Scholar 

  • Prevot V, Rio C, Cho GJ, Lomniczi A, Heger S, Neville CM, Rosenthal NA, Ojeda SR, Corfas G (2003b) Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J Neurosci 23:230–239

    CAS  Google Scholar 

  • Prevot V, Lomniczi A, Corfas G, Ojeda SR (2005) ErbB-1 and erbB-4 receptors act in concert to facilitate both female sexual development and mature reproductive function. Endocrinology 146:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Rage F, Hill DF, Sena-Esteves M, Breakefield XO, Coffey RJ, Costa ME, McCann SM, Ojeda SR (1997a) Targeting transforming growth factor a expression to discrete loci of the neuroendocrine brain induces female sexual precocity. Proc Natl Acad Sci USA 94:2735–2740

    Article  CAS  Google Scholar 

  • Rage F, Lee BJ, Ma YJ, Ojeda SR (1997b) Estradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-to-neuron signaling pathway. J Neurosci 17:9145–9156

    CAS  Google Scholar 

  • Riese DJ, Bermingham Y, van Raaij TM, Buckley S, Plowman GD, Stern DF (1996a) Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene 12:345–353

    CAS  Google Scholar 

  • Riese DJ, Kim ED, Elenius K, Buckley S, Klagsbrun M, Plowman GD, Stern DF (1996b) The epidermal growth factor receptor couples transforming growth factor-a heparin-binding epidermal growth factor-like factor, and amphiregulin to neu, ErbB-3 and ErbB-4. J Biol Chem 271:20047–20052

    Article  CAS  Google Scholar 

  • Rimer M (2003) Neuregulins: Primary or secondary signals for the control of synapse-specific gene expression. J Neurocytol 32:665–675

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: A key component of brain–endocrine interaction. Int Rev Cytol 247:89–164

    Article  PubMed  CAS  Google Scholar 

  • Roth C, Leonhardt S, Theiling K, Lakomek M, Jarry H, Wuttke W (1998) Ontogeny of the GnRH-, glutaminase- and glutamate decarboxylase-gene expression in the hypothalamus of female rats. Brain Res Dev Brain Res 110:105–114

    Article  PubMed  CAS  Google Scholar 

  • Roth CL, McCormack AL, Lomniczi A, Mungenast AE, Ojeda SR (2006) Quantitative proteomics identifies a major change in glial glutamate metabolism at the time of female puberty. Mol Cell Endocrinol 254–255:51–59

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Weskamp G, Kelly K, Zhou H-M, Higashiyama S, Peshon J, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Lustig M, Nativ M, Hemperly JJ, Schlessinger J, Peles E, Grumet M (1997) Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J Cell Biol 136:907–918

    Article  PubMed  CAS  Google Scholar 

  • Shelly M, Pinkas-Kramarski R, Guarino BC, Waterman H, Wang L-M, Lyass L, Alimandi M, Kuo A, Bacus SS, Pierce HJ, Andrews GC, Yarden Y (1998) Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem 273:10496–10505

    Article  PubMed  CAS  Google Scholar 

  • Silverman A-J, Livne I, Witkin JW (1994) The gonadotropin-releasing hormone (GnRH), neuronal systems: Immunocytochemistry and in situ hybridization. In: Knobil E, Neill JD, eds), pp. The Physiology of Reproduction, 2nd Edition, Vol. 1RavenNew York, NY: 1683–1709.

    Google Scholar 

  • Stella N, Tencé M, Glowinski J, Prémont J (1994) Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci 14:568–575

    PubMed  CAS  Google Scholar 

  • Terasawa E (1995) Mechanisms controlling the onset of puberty in primates: The role of GABAergic neurons. In: Plant TM, Lee PA, eds), pp The Neurobiology of PubertyJournal of Endocrinology LtdBristol:139–151.

    Google Scholar 

  • E Terasawa (2002) Role of ATP in synchronization of Ca2+ oscillations in LHRH neurons in vitro

    Google Scholar 

  • Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 22:111–151

    Article  PubMed  CAS  Google Scholar 

  • Terasawa E, Keen KL, Grendell RL, Golos TG (2005) Possible role of 5′-adenosine triphosphate in synchronization of Ca2+. oscillations in primate luteinizing hormone-releasing hormone neurons Mol Endocrinol 19:2736–2747

    Article  PubMed  CAS  Google Scholar 

  • Tsai P-S, Werner S, Weiner RI (1995) Basic fibroblast growth factor is a neurotropic factor in GT1 gonadotropin-releasing hormone neuronal cell lines. Endocrinology 136:3831–3838

    Article  PubMed  CAS  Google Scholar 

  • Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI (2005) Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol Endocrinol 19:225–236

    Article  PubMed  CAS  Google Scholar 

  • Tzahar E, Pinkas-Kramarski R, Moyer JD, Klapper LN, Alroy I, Levkowitz G, Shelly M, Henis S, Eisenstein M, Ratzkin BJ, Sela M, Andrews GC, Yarden Y (1997) Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J 16:4938–4950

    Article  PubMed  CAS  Google Scholar 

  • Voigt P, Ma YJ, Gonzalez D, Fahrenbach WH, Wetsel WC, Berg-von der Emde K, Hill DF, Taylor KG, Costa ME, Seidah NG, Ojeda SR (1996) Neural and glial-mediated effects of growth factors acting via tyrosine kinase receptors on LHRH neurons. Endocrinology 137:2593–2605

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Qian X, Greene MI (1990) Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell 61:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A (1995) Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 14:4267–4275

    PubMed  CAS  Google Scholar 

  • Wetsel WC, Hill DF, Ojeda SR (1996) Basic fibroblast growth factor regulates the conversion of pro-luteinizing hormone-releasing hormone (LHRH) to LHRH in immortalized hypothalamic neurons. Endocrinology 137:2606–2616

    Article  PubMed  CAS  Google Scholar 

  • Witkin JW, Ferin M, Popilskis SJ, Silverman A-J (1991) Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: Synaptic input and glial apposition. Endocrinology 129:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Witkin JW, O’Sullivan H, Ferin M (1995) Glial ensheathment of GnRH neurons in pubertal female rhesus macaques. J Neuroendocrinol 7:665–671

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Sun J, Liu N, Wen D, Chang D, Thomason A, Yoshinaga SK (1996) Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J Biol Chem 271:3884–3890

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ (1997) Neuregulin-3 (NGR3): A novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 94:9562–9567

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P (1982) Estrogen-dependent changes in the functional interrelationships among neurons, ependymal cells and glial cells of the arcuate nucleus. Cytometric studies in the female albino mouse. Cell Tissue Res 227:113–128

    Article  PubMed  CAS  Google Scholar 

  • Zisch AH, D’Alessandri L, Amrein K, Ranscht B, Winterhalter KH, Vaughan L (1995) The glypiated neuronal cell adhesion molecule contactin/F11 complexes with src-family protein tyrosine kinase Fyn. Mol Cell Neurosci 6:263–279

    Article  PubMed  CAS  Google Scholar 

  • Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health HD25123, MH65438, U54 HD18185 through cooperative agreement as part of the Specialized Cooperative Center’s Program in Reproduction and Infertility Research, National Institute of Child Health and Human Development/NIH, and RR00163 for the operation of the Oregon National Primate Research Center.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lomniczi, A., Ojeda, S. (2009). A Role for Glial Cells of the Neuroendocrine Brain in the Central Control of Female Sexual Development. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_19

Download citation

Publish with us

Policies and ethics