Purinergic signaling in astrocyte function and interactions with neurons

  • R. Douglas Fields

Purinergic signaling, which is intercellular communication mediated by adenosine triphosphate (ATP) and its breakdown products (Fields, 2006a; Fields and Burnstock, 2006; Fields and Stevens, 2000), can be considered the most pervasive mode of communication among cells in the nervous system. This is because, in contrast to neurotransmitters, growth factors, and ion fluxes, all cells share mechanisms for releasing ATP and membrane receptors for detecting it or its breakdown products. This enables all major types of glia to communicate via purinergic signaling and to communicate with neurons, vascular, and immune system cells. Consequently, the scope of functions mediated by ATP signaling spans the full range of physiological and pathophysiological processes in the nervous system. Cell proliferation, differentiation, motility, cell death, astrocytic regulation of synaptogenesis and synaptic function, cancer, response to injury, interactions with immune cells, regulation of...


Schwann Cell Synaptic Transmission Purinergic Receptor Purinergic Signaling Terminal Schwann Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adenosine diphosphate


Adenosine monophosphate


Adenosine triphosphate


Cyclic AMP




Inositol 1,4,5 trisposphate


Tumor necrosis factor alpha


  1. Abbracchio MP, Burnstock G (1994) Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475PubMedCrossRefGoogle Scholar
  2. Abbracchio MP, Ceruti S, Langfelder R, Cattabeni F, Saffrey MJ, Burnstock G (1995) Effects of ATP analogues and basic fibroblast growth factor on astroglial cell differentiation in primary cultures of rat striatum. Int J Dev Neurosci 13:685–693PubMedCrossRefGoogle Scholar
  3. Abbracchio MP, Ceruti S, Bolego C, Puglisi L, Burnstock G, Cattabeni F (1996) Trophic roles of P2-purinoceptors in central nervous system astroglial cells. In: Chadwick DJ (ed.) P2 Purinoceptors: Localization, Function and Transduction Mechanisms. Ciba Foundation Symposium 198, pp.Chichester: Wiley142–148.Google Scholar
  4. Almeida T, Rodrigues RJ, de Mendonca A, Ribeiro JA, Cunha RA (2003) Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience 122:111–121PubMedCrossRefGoogle Scholar
  5. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969PubMedCrossRefGoogle Scholar
  6. Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglia cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267–2276PubMedCrossRefGoogle Scholar
  7. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620PubMedCrossRefGoogle Scholar
  8. Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491PubMedCrossRefGoogle Scholar
  9. Brake AJ, Wagenbuch MJ, Julias D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 317:519–523CrossRefGoogle Scholar
  10. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194PubMedCrossRefGoogle Scholar
  11. Burnstock G (2003) Purinergic receptors in the nervous system. Purinergic receptors and signalling. In: Schwiebert EM (ed.) Current Topics in Membranes, Vol. 54, pp. AcademicSan Diego, CA: 307–368.CrossRefGoogle Scholar
  12. Burnstock G (2006) Purinergic signalling – an overview. Novartis Foundation Symposium 276:26–53PubMedCrossRefGoogle Scholar
  13. Ceruti S, Franceschi C, Barbieri D, Malomi W, Camurri A, Giammarioli AM, Ambrosini A, Racagni G, Cattabeni F, Abbracchio MP (2000) Apoptosis induced by 2-chloro-adenosine and 2-chloro-2′-deoxy-adenosine in a human astrocytoma cell line: differential mechanisms and possible clinical relevance. J Neurosci Res 60:388–400PubMedCrossRefGoogle Scholar
  14. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25:4615–4627PubMedCrossRefGoogle Scholar
  15. Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimote I, D’Onofrio M, Nicoletti F, Caciagli F (1999) Activation of A(1) adenosine or mGlur3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100 beta protein from cultured astrocytes. Glia 27:275–281PubMedCrossRefGoogle Scholar
  16. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362PubMedCrossRefGoogle Scholar
  17. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 247:470–473PubMedCrossRefGoogle Scholar
  18. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740PubMedCrossRefGoogle Scholar
  19. Cunha RA (2001) Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. Neurochem Res 26:979–991PubMedCrossRefGoogle Scholar
  20. Cunha RA, Ribeiro JA (2000) Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39:1156–1167PubMedCrossRefGoogle Scholar
  21. Cunha RA, Johansson B, Fredholm BB, Ribeiro JA, Sebastiao AM (1995) Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neurosci Lett 196:41–44PubMedCrossRefGoogle Scholar
  22. Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP release from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877PubMedCrossRefGoogle Scholar
  23. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci 8:752–758PubMedCrossRefGoogle Scholar
  24. Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913PubMedCrossRefGoogle Scholar
  25. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol (Lond) 68:213–237Google Scholar
  26. Fields RD (2004) The other half of the brain. Scientific American 290:54–61PubMedCrossRefGoogle Scholar
  27. Fields RD (2005) Myelination: An overlooked mechanism of synaptic plasticity? Neuroscientist 11:528–531PubMedCrossRefGoogle Scholar
  28. Fields RD (2006a) Purinergic Signaling in Neuron–Glia Interactions, Novartis Foundation Symposium, Vol. 267. WileyNew York, NYGoogle Scholar
  29. Fields RD (2006b) Nerve impulses regulate myelination through purinergic signalling. Novartis Symposium Foundation 276:148–161CrossRefGoogle Scholar
  30. Fields RD, Burnstock G (2006) Purinergic signaling in neuron–glia interactions. Nature Reviews Neuroscience 7:423–436PubMedCrossRefGoogle Scholar
  31. Fields RD, Stevens B (2000) ATP in signaling between neurons and glia. Trends Neurosci 23:625–633PubMedCrossRefGoogle Scholar
  32. Fields RD, Stevens-Graham B (2002) New views of neuron–glia communication. Science 298:483–690CrossRefGoogle Scholar
  33. Fowler JC, Gervitz LM, Hamilton ME, Walker JA (2003) Systemic hypoxia and the depression of synaptic transmission in rat hippocampus after carotid artery occlusion. J Physiol 550:961–972PubMedCrossRefGoogle Scholar
  34. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Ådén U, Svenningssson P (2001) Adenosine receptor signaling in vitro and in vivo. Drug Dev Res 52:274–282CrossRefGoogle Scholar
  35. Gendron FP, Chalimoniuk M, Strosznajder J, Shen S, Gonzalez FA, Weisman GA, Sun GY (2003) P2X7 nucleotide receptor activation enhances IFNgamma-induced type II nitric oxide synthase activity in BV-2 microglial cells. J Neurochem 87:344–352PubMedCrossRefGoogle Scholar
  36. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature Neurosci 8:1078–1086PubMedCrossRefGoogle Scholar
  37. Grafstein B, Liu S, Cotrina ML, Goldman SA, Nedergaard M (2000) Meningeal cells can communicate with astrocytes by calcium signaling. Ann Neurol 47:18–25PubMedCrossRefGoogle Scholar
  38. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456PubMedCrossRefGoogle Scholar
  39. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP release from astrocytes mediates glial calcium waves. J Neurosci 19:520–528PubMedGoogle Scholar
  40. Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93:13268–13273PubMedCrossRefGoogle Scholar
  41. Haughey NJ, Mattson MP (2003) Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium wave propagation in astrocytes. Neuromol Med 3:173–180CrossRefGoogle Scholar
  42. Hauser RA, Schwarzschild MA (2005) Adenosine A2A receptor antagonists for Parkinson’s disease: rationale, therapeutic potential and clinical experience. Drugs Aging 22:471–482PubMedCrossRefGoogle Scholar
  43. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75:965–972PubMedCrossRefGoogle Scholar
  44. Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406PubMedCrossRefGoogle Scholar
  45. Illes P, Norenberg W, Gebicke-Haerter PJ (1996) Molecular mechanisms of microglial activation. B. Voltage- and purinoceptor-operated channels in microglia. Neurochem Int 29:13–24PubMedCrossRefGoogle Scholar
  46. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832PubMedCrossRefGoogle Scholar
  47. Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I (2006) Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol 2:259–270PubMedCrossRefGoogle Scholar
  48. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci 1:683–692PubMedCrossRefGoogle Scholar
  49. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Séguéla P, Voigt M, Humphrey PPA (2001) International Union of Pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118PubMedGoogle Scholar
  50. Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–535PubMedCrossRefGoogle Scholar
  51. Kukley M, Schwan M, Fredholm BB, Dietrich D (2005) The role of extracellular adenosine in regulating mossy fiber synaptic plasticity. J Neurosci 25:2832–2837PubMedCrossRefGoogle Scholar
  52. Kuperman AS, Volpert WA, Okamoto M (1964) Release of Adenine nucleotide from nerve axons. Nature 204:1000–1001PubMedCrossRefGoogle Scholar
  53. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795PubMedCrossRefGoogle Scholar
  54. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560PubMedCrossRefGoogle Scholar
  55. Li R, Messing A, Goldman JE, Brenner M (2002) GFAP mutations in Alexander’s disease. Int J Dev Neurosci 20:259–268PubMedCrossRefGoogle Scholar
  56. Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, Raine CS. 1996 GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 17:607–615.PubMedCrossRefGoogle Scholar
  57. Light AR, Wu Y, Hughen RW, Guthrie PB (2006) Purinergic receptors activating rapid intracellular Ca2+. increases in microglia Neuron Glia Biol 2:125–138PubMedCrossRefGoogle Scholar
  58. Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004a) Astrocyte-mediated activation of neuronal kainite receptors. Proc Natl Acad Sci USA 1201:3172–3177CrossRefGoogle Scholar
  59. Liu QS, Xu Q, Kang J, Nedergaard M (2004b) Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol 1:307–316CrossRefGoogle Scholar
  60. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 112:319–329PubMedCrossRefGoogle Scholar
  61. Malva JO, Silva AP, Cunha RA (2003) Presynaptic modulatiopn controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. Neurochem Res 28:1501–1515PubMedCrossRefGoogle Scholar
  62. Masino SA, Diao L, Illes P, Zahniser NR, Larson GA, Johansson B, Fredholm BB, Dunwiddie TV (2002) Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine A(1) receptors. J Pharmacol Exp Ther 303:356–363PubMedCrossRefGoogle Scholar
  63. McCarthy KD, Salm AK (1991) Pharmacologically-distinct subsets of astroglia can be indentified by their calcium response to neurolignads. Neuroscience 41:325–333PubMedCrossRefGoogle Scholar
  64. Mishra SK (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684PubMedCrossRefGoogle Scholar
  65. Neary JT (1996) Trophic actions of extracellular ATP on astrocytes, synergistic interactions with fibroblast growth factors and underlying signal transduction mechanisms. Ciba Found Symposium 198:130–139Google Scholar
  66. Neary JT, Whittemore SR, Zhu O, Norenberg MD (1994) Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J Neurochem 63:490–494PubMedCrossRefGoogle Scholar
  67. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356PubMedGoogle Scholar
  68. Nedeljkovic N, Bjeloba I, Subasic S, Pekovic S, Stojkov D, Vjestica A, Rakic L, Stojiljkovic M (2007) Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol Int 30:541–546CrossRefGoogle Scholar
  69. Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666PubMedGoogle Scholar
  70. Newman EA (2004) A dialogue between glia and neurons in the retina: Modulation of neuronal excitability. Neuron Glia Biol 1:245–252PubMedCrossRefGoogle Scholar
  71. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  72. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the CNS of amphibian. J Neurophysiol 29:788–806PubMedGoogle Scholar
  73. Paemeleire K, Leybaert L (2000) ATP-dependent astrocyte-endothelial calcium signaling following mechanical damage to a single astrocyte in astrocyte–endothelial co-cultures. J Neurotrauma 17:345–358PubMedCrossRefGoogle Scholar
  74. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JU, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116PubMedCrossRefGoogle Scholar
  75. Perez MT, Ehinger BE, Lindstrom K, Fredholm BB (1986) Release of endogenous and radioactive purines from the rabbit retina. Brain Res 298:106–112CrossRefGoogle Scholar
  76. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  77. Redman RS, Silinsky EM (1995) ATP release together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J Physiol 477:117–127Google Scholar
  78. Robitaille R (1995) Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 15:7121–7131PubMedGoogle Scholar
  79. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295PubMedCrossRefGoogle Scholar
  80. Saura J, Angulo E, Ejarque A, Casado V, Tusell JM, Moratalla R, Chen JF, Schwarzschild MA, Lluis C, Franco R, Serrotosa J (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 95:919–929PubMedCrossRefGoogle Scholar
  81. Sawynok J, Downie JW, Reid AR, Cahill CM, White TD (1993) ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin. Brain Res 610:32–38PubMedCrossRefGoogle Scholar
  82. Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5380PubMedCrossRefGoogle Scholar
  83. Simard M, Nedergaard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262PubMedGoogle Scholar
  84. Stevens B (2006) Cross-talk between growth factor and purinergic signaling regulates Schwann cell proliferation. Novartis Foundation Symposium 276:162–180PubMedCrossRefGoogle Scholar
  85. Stevens B, Fields RD (2000) Action potentials regulate Schwann cell proliferation and development. Science 287:2267–2271PubMedCrossRefGoogle Scholar
  86. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: A neuron–glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868PubMedCrossRefGoogle Scholar
  87. Stevens B, Ishibashi T, Chen JF, Fields RD (2004) Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol 1:23–34PubMedCrossRefGoogle Scholar
  88. Suadicani SO, Pina-Benabou MH, Urban-Maldonado M, Spray DC, Scemes E (2003) Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 42:160–171PubMedCrossRefGoogle Scholar
  89. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptor mediate ATP release and amplification of astrocytic intercellular calcium signaling. J Neurosci 26:1378–1385PubMedCrossRefGoogle Scholar
  90. Sul J-Y, Orosz G, Givens RS, Haydon PG (2004) Astrocytic connectivity in the hippocampus. Neuron Glia Biol 1:3–12PubMedCrossRefGoogle Scholar
  91. Tebano MT, Martie A, Rebola N, Pepponi R, Domenici MR, Gro MC, Schwarzschild MA, Chen JF, Cunha RA, Popoli P (2005) Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N. -methyl-d-aspartate effects J Neurochem 95:1188–1200PubMedCrossRefGoogle Scholar
  92. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nature Med 11:973–981PubMedGoogle Scholar
  93. Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659PubMedCrossRefGoogle Scholar
  94. Tran MD, Neary JT (2006) Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci USA 103:9321–9326PubMedCrossRefGoogle Scholar
  95. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783.PubMedCrossRefGoogle Scholar
  96. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007PubMedCrossRefGoogle Scholar
  97. Wang CM, Chang YY, Kuo JS, Sun SH (2002) Activation of P2X(7) receptors induced [(3)H]GABA release from the RBA-2 type-2 astrocyte cell line through a cl(–)/HCO(3)(–)-dependent mechanism. Glia 37:8–18PubMedCrossRefGoogle Scholar
  98. Wieraszko A, Ehrlich YH (1994) On the role of extracellular ATP in the induction of long-term potentiation in the hippocampus. J Neurochem 63:1731–1738PubMedCrossRefGoogle Scholar
  99. Zhang JMet al. (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982PubMedCrossRefGoogle Scholar
  100. Zhang X, Li A, Ge J, Reigada D, Laties AM, Mitchell CH (2007) Neuronal somatic ATP release triggers neuron–satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104:9864–98969PubMedCrossRefGoogle Scholar
  101. Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17:420–426PubMedCrossRefGoogle Scholar
  102. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Foundation Symposium 276:113–130PubMedCrossRefGoogle Scholar
  103. Zimmermann H (2007) Ecto-nucleotidases, molecular properties and functional impact. Ann Rev Acad Nac Farm 73:537–566Google Scholar
  104. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci 6:43–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Nervous System Development and Plasticity SectionNational Institutes of HealthBethesdaMD

Personalised recommendations