Glia-derived D-serine and synaptic plasticity

  • Magalie Martineau
  • Stéphane H.R. Oliet
  • Jean-Pierre Mothet

16.1 Introduction

Although the chemical and physical properties of l-amino acids and d-amino acids are extremely similar, only l-amino acids seemed to have been selected from the origin of life on the primitive Earth. In their chemical evolutionary step, d-amino acids seemed to have been eliminated, and hence it has been considered that all superior living organisms are composed only of l-amino acids. Homochirality is a characteristic signature of life. This asymmetry in biology is assumed to be a feature of fundamental physics, because the naturall-amino acids are more stable than their unnaturald mirror images. Until the last 30 years, it has been considered that d-amino acids were excluded from living systems except for d-amino acids in the cell wall of microorganisms (Fujii, 2002). Biologists have since discovered that nature could deal with at least two d-amino acids, d-serine and d-aspartic acids in higher living organisms. The discovery of d-serine in the central nervous system...


Glial Cell Glutamatergic Synapse Bergmann Glia Serine Racemase DAAO Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



α-amino-3-hydroxy-5-methyl-isoxazole propionate


Adenosine 5′-triphosphate


B amino acid transporter


Alanine-serine-cysteine transporter 1


Calcium ion concentration


Central nervous system


d-Amino acid oxidase


Glial fibrillary acidic protein


Glutamate receptors


Glycine oxidase


Golgin subfamily A member 3


Glutamate receptor interacting protein


Hypothalamo-neurohypophysial system


High-performance liquid chromatography -ir Immunoreactivity


Large dense-core vesicles


Long-term depression


Long-term potentiation


N-methyl d-aspartate receptors


Nitric oxide


Nitric oxide synthase


Protein interacting with C-kinase


Protein kinase C


Pyridoxal 5′-phosphate


Synaptic-like microvesicles


Soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor


Supraoptic nucleus


Serine racemase


Tetanus neurotoxin



We would like to thank Thierry Galli, Reinhard Jahn, Loredano Pollegioni, Silvia Sacchi, and Dyonisia Theodosis for their help, and our previous colleagues, Gérard Baux, Philippe Fossier, Gilles Ouanounou, Jean-Marie Billard, and Aude Panatier for their original contributions. The experiments carried out in our laboratory are supported by grants from INSERM, CNRS, the University of Bordeaux 2, the Association Française contre les Myopathies, the Association pour la Recherche sur le Cancer, the Institut National du Cancer, the Agence National de la Recherche, and the Human Frontier Science Program. Magalie Martineau is a recipient of a PhD studenship from the Ministère de l’Enseignement, de la Recherche et de la Technologie.


  1. Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673.PubMedGoogle Scholar
  2. Barnes CA (2003) Long-term potentiation and the ageing brain. Philos Trans R Soc Lond B Biol Sci 358:765–772.PubMedCrossRefGoogle Scholar
  3. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia Schizophr Res 90:41–51.PubMedCrossRefGoogle Scholar
  4. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620.PubMedCrossRefGoogle Scholar
  5. Calegari F, Coco S, Taverna E, Bassetti M, Verderio C, Corradi N, Matteoli M, Rosa P (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547.PubMedCrossRefGoogle Scholar
  6. Chen Z, Huang W, Srinivas SR, Jones CR, Ganapathy V, Prasad PD (2004) Serine racemase and D-serine transport in human placenta and evidence for a transplacental gradient for d-serine in humans J Soc Gynecol Investig 11:294–303.PubMedCrossRefGoogle Scholar
  7. Chumakov I (2002) Genetic and physiological data implicating the new human gene G72. and the gene for d-amino acid oxidase in schizophrenia Proc Natl Acad Sci USA 99:13675–13680.PubMedCrossRefGoogle Scholar
  8. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362.PubMedCrossRefGoogle Scholar
  9. Cook SP, Galve-Roperh I, Martinez del Pozo A, Rodriguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277:27782–27792.PubMedCrossRefGoogle Scholar
  10. Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582.PubMedCrossRefGoogle Scholar
  11. Danysz W, Parsons AC (1998) Glycine and N. -methyl-d-aspartate receptors: physiological significance and possible therapeutic applications Pharmacol Rev 50:597–664.PubMedGoogle Scholar
  12. Danysz W, Fadda E, Wroblewski JT, Costa E (1990) [3H]D-serine labels strychnine-insensitive glycine recognition sites of rat central nervous system Life Sci 46:155–164.PubMedCrossRefGoogle Scholar
  13. De Miranda J, Santoro A, Engelender S, Wolosker H (2000) Human serine racemase: molecular cloning, genomic organization and functional analysis. Gene 256:183–188.PubMedCrossRefGoogle Scholar
  14. De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N. -methyl-d-aspartate (NMDA) receptor coagonist d-serine Proc Natl Acad Sci USA 99:14542–14547.PubMedCrossRefGoogle Scholar
  15. Deleuze C, Duvoid A, Hussy N (1998) Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 507:463–471.PubMedCrossRefGoogle Scholar
  16. Dememes D, Mothet JP, Nicolas MT (2006) Cellular distribution of D-serine, serine racemase and d-amino acid oxidase in the rat vestibular sensory epithelia Neuroscience 137:991–997.PubMedCrossRefGoogle Scholar
  17. Dumin E, Bendikov I, Foltyn VN, Misumi Y, Ikehara Y, Kartvelishvily E, Wolosker H (2006) Modulation of D-serine levels via ubiquitin-dependent proteasomal degradation of serine racemase J Biol Chem 281:20291–20302.PubMedCrossRefGoogle Scholar
  18. Dunlop DS, Neidle A (1997) The origin and turnover of D-serine in brain Biochem Biophys Res Commun 235:26–30.PubMedCrossRefGoogle Scholar
  19. Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Brain Res Mol Brain Res 133:208–214.PubMedCrossRefGoogle Scholar
  20. Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular D-serine levels through an alpha, beta-elimination activity J Biol Chem 280:1754–1763.PubMedCrossRefGoogle Scholar
  21. Friedman M (1999) Chemistry, nutrition, and microbiology of D. -amino acids J Agric Food Chem 47:3457–3479.PubMedCrossRefGoogle Scholar
  22. Fujii N (2002) D. -Amino acids in living higher organisms Orig Life Evol Biosph 32:103–127.PubMedCrossRefGoogle Scholar
  23. Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A (2006) Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11:150–157.PubMedCrossRefGoogle Scholar
  24. Gressens P (2000) Mechanisms and disturbances of neuronal migration. Pediatr Res 48:725–730.PubMedCrossRefGoogle Scholar
  25. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143.PubMedCrossRefGoogle Scholar
  26. Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68:138–149.PubMedCrossRefGoogle Scholar
  27. Hamase K, Konno R, Morikawa A, Zaitsu K (2005) Sensitive determination of D. -amino acids in mammals and the effect of d-amino-acid oxidase activity on their amounts Biol Pharm Bull 28:1578–1584.PubMedCrossRefGoogle Scholar
  28. Hashimoto A, Oka T (1997) Free D. -aspartate and d-serine in the mammalian brain and periphery Prog Neurobiol 52:325–353.PubMedCrossRefGoogle Scholar
  29. Hashimoto A, Oka T, Nishikawa T (1995a) Anatomical distribution and postnatal changes in endogenous free D. -aspartate and d-serine in rat brain and periphery Eur J Neurosci 7:1657–1663.CrossRefGoogle Scholar
  30. Hashimoto A, Oka T, Nishikawa T (1995b) Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis Neuroscience 66:(3)635–643.CrossRefGoogle Scholar
  31. Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539.PubMedCrossRefGoogle Scholar
  32. Hayashi F, Takahashi K, Nishikawa T (1997) Uptake of D. - and l-serine in C6 glioma cells Neurosci Lett 239:85–88.PubMedCrossRefGoogle Scholar
  33. Helboe L, Egebjerg J, Moller M, Thomsen C (2003) Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18:2227–2238.PubMedCrossRefGoogle Scholar
  34. Hepner F, Pollak A, Ulfig N, Yae-Kyung M, Lubec G (2005) Mass spectrometrical analysis of human serine racemase in foetal brain. J Neural Transm 112:805–811.PubMedCrossRefGoogle Scholar
  35. Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239.PubMedCrossRefGoogle Scholar
  36. Horiike K, Tojo H, Arai R, Nozaki M, Maeda T (1994) D. -Amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes Brain Res 652:297–303.PubMedCrossRefGoogle Scholar
  37. Jahn R, Sudhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911.PubMedCrossRefGoogle Scholar
  38. Javitt DC, Balla A, Sershen H (2002) A novel alanine-insensitive D-serine transporter in rat brain synaptosomal Brain Res 941:146–149.PubMedCrossRefGoogle Scholar
  39. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531.PubMedCrossRefGoogle Scholar
  40. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived D-serine release provides a novel means to activate N-methyl-d-aspartate receptors J Biol Chem 281:14151–14162.PubMedCrossRefGoogle Scholar
  41. Katagiri M, Tojo H, Horiike K, Yamano T (1991) Immunochemical relationship of D. -amino acid oxidases in various tissues and animals Comp Biochem Physiol B 99:345–350.PubMedCrossRefGoogle Scholar
  42. Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A (2004) Endogenous D-serine is involved in induction of neuronal death by N-methyl-d-aspartate and simulated ischemia in rat cerebrocortical slices J Pharmacol Exp Ther 311:836–844.PubMedCrossRefGoogle Scholar
  43. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 102:2105–2110.PubMedCrossRefGoogle Scholar
  44. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837.PubMedCrossRefGoogle Scholar
  45. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–99.PubMedCrossRefGoogle Scholar
  46. Konno R (2003) Rat cerebral serine racemase: amino acid deletion and truncation at carboxy terminus. Neurosci Lett 349:111–114.PubMedCrossRefGoogle Scholar
  47. Martineau M, Baux G, Mothet JP (2006) D-serine signalling in the brain: friend and foe Trends Neurosci 29:481–491.PubMedCrossRefGoogle Scholar
  48. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration J Neurochem 65:454–458.PubMedCrossRefGoogle Scholar
  49. Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H, Tsukada S, Ooigawa H, Nawashiro H, Kobayashi Y, Fukuda J, Endou H (2004) High affinity D. - and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices Neurosci Lett 358:123–126.PubMedCrossRefGoogle Scholar
  50. Miyata S, Hatton GI (2002) Activity-related, dynamic neuron–glial interactions in the hypothalamo-neurohypophysial system. Microsc Res Technol 56:143–157.CrossRefGoogle Scholar
  51. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642.PubMedCrossRefGoogle Scholar
  52. Moreno S, Nardacci R, Cimini A, Ceru MP (1999) Immunocytochemical localization of D. -amino acid oxidase in rat brain J Neurocytol 28:169–185.PubMedCrossRefGoogle Scholar
  53. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor Proc Natl Acad Sci USA 97:4926–4931.PubMedCrossRefGoogle Scholar
  54. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine Proc Natl Acad Sci USA 102:5606–5611.PubMedCrossRefGoogle Scholar
  55. Mothet JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard JM (2006) A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory Aging Cell 5:267–274.PubMedCrossRefGoogle Scholar
  56. Mustafa AK, Kim PM, Snyder SH (2004) D-serine as a putative glial neurotransmitter Neuron Glia Biol 1:275–281.PubMedCrossRefGoogle Scholar
  57. Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK, Amzel LM, Snyder SH (2007) Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation Proc Natl Acad Sci USA 104:2950–2955.PubMedCrossRefGoogle Scholar
  58. Neidle A, Dunlop DS (2002) Allosteric regulation of mouse brain serine racemase. Neurochem Res 27:1719–1724.PubMedCrossRefGoogle Scholar
  59. Nicoll RA (2003) Expression mechanisms underlying long-term potentiation: a postsynaptic view. Philos Trans R Soc Lond B Biol Sci 358:721–726.PubMedCrossRefGoogle Scholar
  60. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553.PubMedCrossRefGoogle Scholar
  61. O’Brien KB, Miller RF, Bowser MT (2005) D-serine uptake by isolated retinas is consistent with ASCT-mediated transport Neurosci Lett 385:58–63.PubMedCrossRefGoogle Scholar
  62. Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926.PubMedCrossRefGoogle Scholar
  63. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory Cell 125:775–784.PubMedCrossRefGoogle Scholar
  64. Paudice P, Gemignani A, Raiteri M (1998) Evidence for functional native NMDA receptors activated by glycine or D-serine alone in the absence of glutamatergic coagonist Eur J Neurosci 10:2934–2944.PubMedCrossRefGoogle Scholar
  65. Puyal J, Martineau M, Mothet JP, Nicolas MT, Raymond J (2006) Changes in D-serine levels and localization during postnatal development of the rat vestibular nuclei J Comp Neurol 497:610–621.PubMedCrossRefGoogle Scholar
  66. Reiprich P, Kilb W, Luhmann HJ (2005) Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cereb Cortex 15:349–358.PubMedCrossRefGoogle Scholar
  67. Ribeiro CS, Reis M, Panizzutti R, de Miranda J, Wolosker H (2002) Glial transport of the neuromodulator D-serine Brain Res 929:202–209.PubMedCrossRefGoogle Scholar
  68. Ritter LM, Unis AS, Meador-Woodruff JH (2001) Ontogeny of ionotropic glutamate receptor expression in human fetal brain. Brain Res Dev Brain Res 127:123–133.PubMedCrossRefGoogle Scholar
  69. Schell MJ (2004) The N. -methyl d-aspartate receptor glycine site and d-serine metabolism: an evolutionary perspective Philos Trans R Soc Lond B Biol Sci 359:943–964.PubMedCrossRefGoogle Scholar
  70. Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952.PubMedCrossRefGoogle Scholar
  71. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors J Neurosci 17:1604–1615.PubMedGoogle Scholar
  72. Shleper M, Kartvelishvily E, Wolosker H (2005) D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices J Neurosci 25:9413–9417.PubMedCrossRefGoogle Scholar
  73. Shoji K, Mariotto S, Ciampa AR, Suzuki H (2006a) Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Neurosci Lett 394:163–167.CrossRefGoogle Scholar
  74. Shoji K, Mariotto S, Ciampa AR, Suzuki H (2006b) Regulation of serine racemase activity by D-serine and nitric oxide in human glioblastoma cells Neurosci Lett 392:75–78.CrossRefGoogle Scholar
  75. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors Proc Natl Acad Sci USA 10:6789–6794.CrossRefGoogle Scholar
  76. Strisovsky K, Jiraskova J, Barinka C, Majer P, Rojas C, Slusher BS, Konvalinka J (2003) Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate. FEBS Lett 535:44–48.PubMedCrossRefGoogle Scholar
  77. Strisovsky K, Jiraskova J, Mikulova A, Rulisek L, Konvalinka J (2005) Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry 44:13091–13100.PubMedCrossRefGoogle Scholar
  78. Taharaguchi S, Kon Y, Yoshino S, Ono E (2003) Impaired development of the cerebellum in transgenic mice expressing the immediate-early protein IE180 of pseudorabies virus. Virology 307:243–254.PubMedCrossRefGoogle Scholar
  79. Theodosis DT (2002) Oxytocin-secreting neurons: a physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol 23:101–135.PubMedCrossRefGoogle Scholar
  80. Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) D-serine added to antipsychotics for the treatment of schizophrenia Biol Psychiatry 44:1081–1089.PubMedCrossRefGoogle Scholar
  81. Volpe JJ, Lee G, Laster L, Robinson JC (1970) Regional distribution of isozymes of D. -amino-acid oxidase and acetylesterase in developing primate brain Exp Neurol 28:76–87.PubMedCrossRefGoogle Scholar
  82. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640.PubMedCrossRefGoogle Scholar
  83. Wake K, Yamazaki H, Hanzawa S, Konno R, Sakio H, Niwa A, Hori Y (2001) Exaggerated responses to chronic nociceptive stimuli and enhancement of N. -methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase Neurosci Lett 297:25–28.PubMedCrossRefGoogle Scholar
  84. Wako K, Ma N, Shiroyama T, Semba R (1995) Glial uptake of intracerebroventricularly injected D-serine in the rat brain: an immunocytochemical study Neurosci Lett 185:171–174.PubMedCrossRefGoogle Scholar
  85. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons Glia 53:401–411.PubMedCrossRefGoogle Scholar
  86. Wolosker H (2006) D-serine regulation of NMDA receptor activity Sci STKE 2006:pe41.PubMedCrossRefGoogle Scholar
  87. Wolosker H, Blackshaw S, Snyder SH (1999a) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission Proc Natl Acad Sci USA 96:13409–13414.CrossRefGoogle Scholar
  88. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999b) Purification of serine racemase: biosynthesis of the neuromodulator D-serine Proc Natl Acad Sci USA 96:721–725.CrossRefGoogle Scholar
  89. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769.PubMedCrossRefGoogle Scholar
  90. Wu S, Barger SW, Sims TJ (2004a) Schwann cell and epineural fibroblast expression of serine racemase. Brain Res 1020:161–166.CrossRefGoogle Scholar
  91. Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW (2004b) Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide J Neuroinflammation 1:2.CrossRefGoogle Scholar
  92. Xia M, Liu Y, Figueroa DJ, Chiu CS, Wei N, Lawlor AM, Lu P, Sur C, Koblan KS, Connolly TM (2004) Characterization and localization of a human serine racemase. Brain Res Mol Brain Res 125:96–104.PubMedCrossRefGoogle Scholar
  93. Xie X, Dumas T, Tang L, Brennan T, Reeder T, Thomas W, Klein RD, Flores J, O’Hara BF, Heller HC, Franken P (2005) Lack of the alanine-serine-cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice. Brain Res 1052:212–221.PubMedCrossRefGoogle Scholar
  94. Yacubova E, Komuro H (2003) Cellular and molecular mechanisms of cerebellar granule cell migration. Cell Biochem Biophys 37:213–234.PubMedCrossRefGoogle Scholar
  95. Yamamoto N, Tomita U, Umino A, Nishikawa T (2001) Uptake of D-serine by synaptosomal P2 fraction isolated from rat brain Synapse 42:84–86.PubMedCrossRefGoogle Scholar
  96. Yang S, Qiao H, Wen L, Zhou W, Zhang Y (2005) D-serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8 Neurosci Lett 379:7–12.PubMedCrossRefGoogle Scholar
  97. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine Proc Natl Acad Sci USA 100:15194–15199.PubMedCrossRefGoogle Scholar
  98. Yasuda E, Ma N, Semba R (2001) Immunohistochemical evidences for localization and production of D-serine in some neurons in the rat brain Neurosci Lett 299:162–164.PubMedCrossRefGoogle Scholar
  99. Ying B, Lu N, Zhang YQ, Zhao ZQ (2006) Involvement of spinal glia in tetanically sciatic stimulation-induced bilateral mechanical allodynia in rats. Biochem Biophys Res Commun 340:1264–1272.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Magalie Martineau
    • 1
  • Stéphane H.R. Oliet
    • 1
  • Jean-Pierre Mothet
    • 1
  1. 1.Centre de Recherche INSERMBordeauxFrance

Personalised recommendations