Molecular approaches for studying astrocytes

  • Todd Fiacco
  • Kristi Casper
  • Elizabeth Sweger
  • Cendra Agulhon
  • Sarah Taves
  • Suzanne Kurtzer-Minton
  • Ken D. McCarthy

14.1 Introduction

In the year 2007, literally hundreds of research papers were published that utilize molecular approaches to study the role of astrocytes in neurophysiology and neurological disorders. This is striking given that the molecular tools for selectively perturbing gene expression in astrocytes were developed just over a decade ago. Two investigators stand out as pioneers in this area, Drs. Michael Brenner and Albee Messing. While at National Institutes of Health, Mike Brenner carried out studies mapping the transcriptional regulatory elements of the promoter for glial fibrillary acidic protein (GFAP) (Masood et al., 1993), an intermediate filament protein expressed exclusively by mature astrocytes in the CNS. This information was absolutely essential in order to develop a regulatory unit (promoter) small enough to be handled by the molecular techniques available in the early 1990s and yet sufficient to target expression constructs to astrocytes in vivo and in vitro. In...


Spinal Cord Injury Glial Fibrillary Acidic Protein Gene Cassette loxP Site Glial Fibrillary Acidic Protein Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adenosine 5′-triphosphate


Bacteria artificial chromosome


Conditional gene knockout


Connexin 43


Enhanced green fluorescent protein


Mutated estrogen receptor


Glial-cell-line-derived neurotrophic factor


Glial fibrillary acidic protein


Gap junction communication


l-glutamate/l-aspartate transporter


Glial l-glutamate transporter


G-protein coupled receptor


Human GFAP


Insulin-like growth factor 1 (IGF-1)


Miniature excitatory postsynaptic current


Nuclear factor kappa B




P1-bacteriophage artificial chromosome


Receptor activated solely by synthetic ligand


The soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor




tet operon


tet transactivator


Yeast artificial chromosome


  1. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881.–890PubMedCrossRefGoogle Scholar
  2. Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 327:401–421.PubMedCrossRefGoogle Scholar
  3. Beglopoulos V, Shen J (2004) Gene-targeting technologies for the study of neurological disorders. Neuromolecular Med 6:13–30.PubMedCrossRefGoogle Scholar
  4. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156.PubMedCrossRefGoogle Scholar
  5. Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14:1030–1037.PubMedGoogle Scholar
  6. Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27:2176–2185.PubMedCrossRefGoogle Scholar
  7. Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31:676–684.PubMedCrossRefGoogle Scholar
  8. Casper KB, Jones K, McCarthy KD (2007) Characterization of astrocyte-specific conditional knockouts. Genesis 45:292–299.PubMedCrossRefGoogle Scholar
  9. Chung JH, Bell AC, Felsenfeld G (1997) Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci USA 94:575–580.PubMedCrossRefGoogle Scholar
  10. Chvatal A, Anderova M, Hock M, Prajerova I, Neprasova H, Chvatal V, Kirchhoff F, Sykova E (2007) Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J Neurosci Res 85:260–271.PubMedCrossRefGoogle Scholar
  11. Delaney CL, Brenner M, Messing A (1996) Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci 16:6908–6918.PubMedGoogle Scholar
  12. Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365.PubMedCrossRefGoogle Scholar
  13. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186.PubMedCrossRefGoogle Scholar
  14. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155.PubMedCrossRefGoogle Scholar
  15. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757.PubMedCrossRefGoogle Scholar
  16. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51.PubMedCrossRefGoogle Scholar
  17. Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24:722–732.PubMedCrossRefGoogle Scholar
  18. Fiacco TA, Agulhon C, Taves SR, Petravicz J, Casper KB, Dong X, Chen J, McCarthy KD (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54:611–626.PubMedCrossRefGoogle Scholar
  19. Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10:83–103.PubMedCrossRefGoogle Scholar
  20. Giraldo P, Rival-Gervier S, Houdebine LM, Montoliu L (2003) The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res 12:751–755.PubMedCrossRefGoogle Scholar
  21. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551.PubMedCrossRefGoogle Scholar
  22. Hatten ME, Heintz N (2005) Large-scale genomic approaches to brain development and circuitry. Annu Rev Neurosci 28:89–108.PubMedCrossRefGoogle Scholar
  23. Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239.PubMedCrossRefGoogle Scholar
  24. Hirrlinger PG, Scheller A, Braun C, Hirrlinger J, Kirchhoff F (2006) Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54:11–20.PubMedCrossRefGoogle Scholar
  25. Ho G, Zhang C, Zhuo L (2007) Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity. Toxicol Appl Pharmacol 221:76–85.PubMedCrossRefGoogle Scholar
  26. Iacobas DA, Scemes E, Spray DC (2004) Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int 45:243–250.PubMedCrossRefGoogle Scholar
  27. Kofuji P CPZKRSLWLHA, Newman EA (2000) Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice: Phenotypic Impact in Retina. J Neurosci 20:5733–5740.PubMedGoogle Scholar
  28. Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Gotz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764.PubMedCrossRefGoogle Scholar
  29. Mansuy IM, Bujard H (2000) Tetracycline-regulated gene expression in the brain. Curr Opin Neurobiol 10:593–596.PubMedCrossRefGoogle Scholar
  30. Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407.PubMedGoogle Scholar
  31. Masood K, Besnard F, Su Y, Brenner M (1993) Analysis of a segment of the human glial fibrillary acidic protein gene that directs astrocyte-specific transcription. 61:160–166.Google Scholar
  32. Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K (2006) From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci USA 103:12161–12166.PubMedCrossRefGoogle Scholar
  33. McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci USA 93:6361–6366.PubMedCrossRefGoogle Scholar
  34. Menet V, Prieto M, Privat A, Gimenez y Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci USA 100:8999–9004.PubMedCrossRefGoogle Scholar
  35. Messing A, Brenner M (2003) Alexander disease: GFAP mutations unify young and old. Lancet Neurol 2:75.PubMedCrossRefGoogle Scholar
  36. Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152:391–398. PubMedGoogle Scholar
  37. Morozov A, Kellendonk C, Simpson E, Tronche F (2003) Using conditional mutagenesis to study the brain. Biol Psychiatry 54:1125–1133.PubMedCrossRefGoogle Scholar
  38. Moynagh PN (2005) The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J Anat 207:265–269.PubMedCrossRefGoogle Scholar
  39. Neusch C, Papadopoulos N, Muller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bahr M, Richter DW, Kirchhoff F, Hulsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95:1843–1852.PubMedCrossRefGoogle Scholar
  40. Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86.PubMedCrossRefGoogle Scholar
  41. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116.PubMedCrossRefGoogle Scholar
  42. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.PubMedCrossRefGoogle Scholar
  43. Scearce-Levie K, Coward P, Redfern CH, Conklin BR (2001) Engineering receptors activated solely by synthetic ligands (RASSLs). Trends Pharmacol Sci 22:414–420.PubMedCrossRefGoogle Scholar
  44. Schipani E (2002) Conditional gene inactivation using cre recombinase. Calcif Tissue Int 71:100–102.PubMedCrossRefGoogle Scholar
  45. Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8:221–225.PubMedCrossRefGoogle Scholar
  46. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599.PubMedCrossRefGoogle Scholar
  47. Stoffel W, Korner R, Wachtmann D, Keller BU (2004) Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice. Brain Res Mol Brain Res 128:170–181.PubMedCrossRefGoogle Scholar
  48. Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, McCarthy KD (2007) Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J Neurosci 27:2309–2317.PubMedCrossRefGoogle Scholar
  49. Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Doring B, Frisch C, Sohl G, Teubner B, Euwens C, Huston J, Steinhauser C, Messing A, Heinemann U, Willecke K (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23:766–776.PubMedGoogle Scholar
  50. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447.PubMedCrossRefGoogle Scholar
  51. Wiencken-Barger AE, Djukic B, Casper KB, McCarthy KD (2007) A role for Connexin43 during neurodevelopment. Glia 55:675–686.PubMedCrossRefGoogle Scholar
  52. Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D’Ercole AJ (2004) Astrocyte-specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 78:472–484.PubMedCrossRefGoogle Scholar
  53. Zhang Q, Haydon PG (2005) Roles for gliotransmission in the nervous system. J Neural Transm 112:121–125.PubMedCrossRefGoogle Scholar
  54. Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A (2004) Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol 190:356–372.PubMedCrossRefGoogle Scholar
  55. Zhuo L, Sun B, Zhang CL Fine A Chiu SY Messing A (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187:36–42 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Todd Fiacco
    • 1
  • Kristi Casper
    • 1
  • Elizabeth Sweger
    • 1
  • Cendra Agulhon
    • 1
  • Sarah Taves
    • 1
  • Suzanne Kurtzer-Minton
    • 1
  • Ken D. McCarthy
    • 1
  1. 1.Department of PharmacologyUniversity of North Carolina at Chapel HillUSA

Personalised recommendations