Synaptic Information Processing by Astrocytes

  • Gertrudis Perea
  • Alfonso Araque

11.1 Introduction

Since the time of the initial studies of the nervous system, neurons were recognized as the cellular elements responsible for the information processing of the nervous system, while glial cells were considered as playing simple supportive roles to neurons. The fundamental attribute of neurons is their cellular electrical excitability, which is based on the expression of a plethora of ligand- and voltage-gated membrane channels that give rise to prominent membrane currents and membrane potential variations, which represent the biophysical substrate underlying the integration and transfer of information at the cellular level in the Central Nervous System (CNS). By contrast, glial cells are not electrically excitable. Although they are able to express some of the ion channels that are expressed by neurons, the level of expression of some key channels is not sufficiently high to support the generation of active electrical behaviors in response to different stimuli....


Synaptic Activity Synaptic Terminal Schaffer Collateral Astrocytic Process Electrical Excitability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





(RS)- IJ-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Adenosine 5′-triphosphate


Central nervous system


γ-Aminobutyric acid


Oligodendrocyte precursors cells


Schaffer collaterals



This chapter was written with grant support from the Ministerio de Educación y Ciencia, Spain (BFU2004-00448) to A.A.


  1. Agmon-Snir H Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393: 268–272PubMedCrossRefGoogle Scholar
  2. Allen NJ Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15: 542–548PubMedCrossRefGoogle Scholar
  3. Araque A Perea G (2004) Glial Modulation of Synaptic Transmission in Culture. Glia 47: 241–248PubMedCrossRefGoogle Scholar
  4. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998a) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10: 2129–2142CrossRefGoogle Scholar
  5. Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998b) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18: 6822–6829Google Scholar
  6. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208–215PubMedCrossRefGoogle Scholar
  7. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between neurons and glia. Annu Rev Physiol 63: 795–813PubMedCrossRefGoogle Scholar
  8. Araque A, Martin ED, Perea G, Arellano JI, Buño W (2002) Synaptically-released acetylcholine evokes Ca2+. elevations in astrocytes in hippocampal slices J Neurosci 22: 2443–2450PubMedGoogle Scholar
  9. Bellamy TC, Ogden D (2005) Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum. Glia 52: 325–335PubMedCrossRefGoogle Scholar
  10. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini B, Pozzan T, Volterra A (1998) Prostaglandins stimulate Ca2+. -dependent glutamate release in astrocytes Nature 391: 281–285PubMedCrossRefGoogle Scholar
  11. Bezzi P Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7: 613–620PubMedCrossRefGoogle Scholar
  12. Buzsaki G, (2002) Theta oscillations in the hippocampus. Neuron 33: 325–340PubMedCrossRefGoogle Scholar
  13. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial ells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6: 983–992PubMedCrossRefGoogle Scholar
  14. Cormier RJ, Mennerick S, Melbostad H, Zorumski CF (2001) Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia 33: 24–35PubMedCrossRefGoogle Scholar
  15. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473PubMedCrossRefGoogle Scholar
  16. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440PubMedCrossRefGoogle Scholar
  17. Fatatis A, Holtzclaw LA, Avidor R, Brenneman DE, Russell JT (1994) Vasoactive intestinal peptide increases intracellular calcium in astroglia: synergism with alpha-adrenergic receptors. Proc Natl Acad Sci USA 91: 2036–2040PubMedCrossRefGoogle Scholar
  18. Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24: 722–732PubMedCrossRefGoogle Scholar
  19. Ge WP, Yang XJ, Zhang Z, Wang HK, Shen W, Deng QD, Duan S (2006) Long-term potentiation of neuron-glia synapses mediated by Ca2+. -permeable AMPA receptors Science 312: 1533–1537PubMedCrossRefGoogle Scholar
  20. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2: 139–143PubMedCrossRefGoogle Scholar
  21. Haydon PG, Araque A (2002) Astrocytes as modulators of synaptic transmission. In: Volterra A, Magistretti PJ, Haydon PG, eds), pp. TheTripartite Synapse: Glia In Synaptic Transmission Oxford University PressNew York: 185–198.Google Scholar
  22. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1: 683–692PubMedCrossRefGoogle Scholar
  23. Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K (1999) Neuron-glia signaling via a1 adrenoceptor-mediated Ca2+. release in Bergmann glial cells in situ J Neurosci 19: 8401–8408PubMedGoogle Scholar
  24. Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci USA 101: 3172–3177PubMedCrossRefGoogle Scholar
  25. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305: 197–213PubMedGoogle Scholar
  26. Matyash V, Filippov V, Mohrhagen V, Kettenmann H (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci 18: 664–670PubMedCrossRefGoogle Scholar
  27. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26: 2862–2870PubMedCrossRefGoogle Scholar
  28. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci USA 102: 5606–5611PubMedCrossRefGoogle Scholar
  29. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431: 195–199PubMedCrossRefGoogle Scholar
  30. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26: 523–530PubMedCrossRefGoogle Scholar
  31. Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87: 528–537PubMedGoogle Scholar
  32. Newman EA, (2005) Glia and Synaptic Transmission. In: Kettenman H, Ransom B, eds.), pp. Neuroglia (Oxford University PressNew York: 355–366.Google Scholar
  33. Newman EA, Zahs KR (1998) Modulation of neuronal activity by glial cells in the retina. J Neurosci 18: 4022–4028PubMedGoogle Scholar
  34. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibian. J Neurophysiol 29: 788–806PubMedGoogle Scholar
  35. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d. -serine controls NMDA receptor activity and synaptic memory Cell 125: 775–784PubMedCrossRefGoogle Scholar
  36. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97: 8629–8634PubMedCrossRefGoogle Scholar
  37. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+. oscillations in situ drive NMDAR-mediated neuronal excitation Nat Neurosci 4: 803–812PubMedCrossRefGoogle Scholar
  38. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310: 113–116PubMedCrossRefGoogle Scholar
  39. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17: 7817–7830PubMedGoogle Scholar
  40. Perea G, Araque A (2005a) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25: 2192–2203CrossRefGoogle Scholar
  41. Perea G, Araque A (2005b) Glial calcium signalling and neuron-glia comunication. Cell Calcium 38: 375–382CrossRefGoogle Scholar
  42. Perea G, Araque A (2006) Synaptic information processing by astrocytes. J Physiol (Paris) 99: 92–97CrossRefGoogle Scholar
  43. Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+. waves and spreading depression in the mouse neocortex J Neurosci 23: 9888–9896PubMedGoogle Scholar
  44. Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16: 5073–5081PubMedGoogle Scholar
  45. Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51: 439–455PubMedCrossRefGoogle Scholar
  46. Ramón y Cajal S (1899) Textura del sistema nervioso del hombre y de los vertrebrados. Tomo I, N. Moya, MadridGoogle Scholar
  47. Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26: 5370–5382PubMedCrossRefGoogle Scholar
  48. Sontheimer H, (1994) Voltage-dependent ion channels in glial cells. Glia 11: 156–172PubMedCrossRefGoogle Scholar
  49. Sul JY, Orosz G, Givens RS, Haydon PG (2004) Astrocytic connectivity in the hippocampus. Neuron Glia Biology 1: 3–11PubMedCrossRefGoogle Scholar
  50. Vertes PR, (2005) Hippocampal theta rhythm: A tag for short-term memory. Hippocampus 15: 923–935PubMedCrossRefGoogle Scholar
  51. Volterra A, Meldolesi J (2005) Quantal release of transmitter: not only for neurons but from astrocytes as well?. In: Kettenman H, Ransom B, eds.), pp. Neuroglia (Oxford University PressNew York: 190–201.Google Scholar
  52. Volterra A, Steinhauser C (2004) Glial modulation of synaptic transmission in the hippocampus. Glia 47: 249–257PubMedCrossRefGoogle Scholar
  53. Zhang J, Wang H, Ye C, Ge W, Chen Y, Jiang Z, Wu C, Poo M, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40: 971–982PubMedCrossRefGoogle Scholar
  54. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gertrudis Perea
    • 1
  • Alfonso Araque
  1. 1.Instituto CajalCSICMadridSpain

Personalised recommendations