Skip to main content

Structural association of astrocytes with neurons and vasculature: Defining territorial boundaries

  • Chapter
  • First Online:
Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP4:

Aquaporin-4

BBB:

Blood–brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

ERM:

Ezrin, radixin, moesin

GABA:

Gama amino butyric acid

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

IP3:

Inositol 1,4,5-trisphosphate

OAPs:

Orthogonal arrays of intramembranous particles

PAE:

Perivascular astrocytic endfeet

PAPs:

Peripheral astroglial processes

PDGF:

Platelet-derived growth factor

TTX:

Tetrodotoxin

References

  • Abbott NJ (1991) Permeability and transport of glial blood–brain barriers. Ann NY Acad Sci 633:378–394

    PubMed  CAS  Google Scholar 

  • Amedeé T, Robert A, Coles JA (1997) Potassium homeostasis and glial energy metabolism. Glia 21:46–55

    PubMed  Google Scholar 

  • Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, De Lanerolle NC, Nagelhus EA, Adams ME, Froehner SC, Agre P, Ottersen OP (2003) Delayed K+. clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of α-syntrophin-null mice Proc Natl Acad Sci USA, 100:13615–13620

    CAS  Google Scholar 

  • Bailey MS, Puche AC, Shipley MT (1999) Development of the olfactory bulb: evidence for glia-neuron interactions in glomerular function. J Comp Neurol 415:423–448

    PubMed  CAS  Google Scholar 

  • Bär T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 59:1–62

    Google Scholar 

  • Bennett MVL, Contreras JE, Bukauskas FF, Sáez JC (2003) New roles for astrocytes: Gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    PubMed  CAS  Google Scholar 

  • Berthold CH, Carlstedt T (1977) Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. III. Myelinated fibres in S1 dorsal rootlets. Acta Physiol Scand Suppl 446:43–60

    CAS  Google Scholar 

  • Bevan S, Chiu SY, Gray PT, Ritchie JM (1985) The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc Lond B Biol Sci 225:299–313

    PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    PubMed  CAS  Google Scholar 

  • Braak E (1975) On the fine structure of the external glial layer in the isocortex of man. Cell Tissue Res 157:367–390

    PubMed  CAS  Google Scholar 

  • Brückner G, Härtig W, Kacza J, Seeger J, Welt K, Brauer K (1996) Extracellular matrix organization in various regions of rat brain gray matter. J Neurocytol 25:333–346

    PubMed  Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH (2003) Examination of the relationship between astrocyte morphology and laminar boundaries in the molecular layer of the adult dentate gyrus. J Comp Neurol 462:241–251

    PubMed  Google Scholar 

  • Butkevich E, Hülsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap juctions to the submembrane cytoskeleton. Curr Biol 14:650–658

    PubMed  CAS  Google Scholar 

  • Butt AM, Duncan A, Berry M (1994) Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astroyctes in the mouse optic nerve. J Neurocytol 23:486–499

    PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL (1972) The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid-Golgi preparations. Z Anat Entw-Gesch 138:1–19

    CAS  Google Scholar 

  • Chao TI, Skatchkov SN, Eberhardt W, Reichenbach A (1994) Na+. channels of Müller (glial) cells isolated from retinae of various mammalian species including man Glia 10:173–185

    PubMed  CAS  Google Scholar 

  • Chao TI, Kasa P, Wolff JR (1997) Distribution of astroglia in glomeruli of the rat main olfactory bulb: exclusion from the sensory subcompartment of neuropil. J Comp Neurol 388:191–210

    PubMed  CAS  Google Scholar 

  • Chao TI, Rickmann M, Wolff JR (2002) The synapse-astrocyte boundary: anatomical basis for an integrative role of glia in synaptic transmission. Volterra A, Magistretti P, Haydon, eds PG Tripartite synapses: Synaptic transmission with glia Oxford University PressOxford, New York: 3–23.

    Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    PubMed  CAS  Google Scholar 

  • Christie SB, De Blas AL (2003) GABAergic and glutamatergic axons innervate the axon initial segment and organize GABA(A) receptor clusters of cultured hippocampal pyramidal cells. J Comp Neurol 456:361–374

    PubMed  CAS  Google Scholar 

  • Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131

    PubMed  CAS  Google Scholar 

  • Connors NC, Kofuji P (2002) Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells. J Neurosci 22:4321–4327

    PubMed  CAS  Google Scholar 

  • Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin glycoprotein complex via α-syntrophin in glia. J Biol Chem 279:28387–28392

    PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  • Denk W, Sugimori M, Llinas R (1995) Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci USA 92:8279–8282

    PubMed  CAS  Google Scholar 

  • Derouiche A (1997)Coupling of glutamate uptake and degradation in transmitter clearance: Anatomical evidence. In: Neurotransmitter release and uptake (Pögün S, ed). NATO ASI Series Vol H:263–282

    Google Scholar 

  • Derouiche A, Frotscher M (1991) Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 552:346–350

    PubMed  CAS  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of l.-glutamate/l-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance J Neurosci Res. 42:131–43

    PubMed  CAS  Google Scholar 

  • Farrell CL, Pardridge WM (1991) Blood–brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes. An electron microscopic immunogold study. Proc Natl Acad Sci USA 88:5779–5783

    PubMed  CAS  Google Scholar 

  • Feeney JF, Watterson RL (1946) The development of the vascular pattern within the walls of the central nervous system of the chick embryo. J Morphol 78:231–303

    PubMed  Google Scholar 

  • Ffrench-Constant C, Miller RH, Kruse J, Schachner M, Raff MC (1986) Molecular specialization of astrocyte processes at nodes of Ranvier in rat optic nerve. J Cell Biol 102:844–852

    PubMed  CAS  Google Scholar 

  • Fleischhauer K, Detzer K (1975) Dendritic bundling in the cerebral cortex. Kreutzberg GW, Advances in Neurology, Vol 12, Physiology and Pathology of DendritesRaven PressNew York: 71–78.

    Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    PubMed  CAS  Google Scholar 

  • Gabbot PLA, Bacon SJ (1996) The organisation of dendritic bundles in the prelimbic cortex (area 32) of the rat. Brain Res 730:75–86

    Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    PubMed  Google Scholar 

  • Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood–retina and blood–brain barrier development. Eur J Neurosci 11:1191–1201

    PubMed  CAS  Google Scholar 

  • Giaume C, Venance L (1995) Gap junctions in brain glial cells and development. Perspectives Dev Neurobiol 2:335–345

    CAS  Google Scholar 

  • Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21:114–123

    PubMed  CAS  Google Scholar 

  • Göbel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79

    PubMed  Google Scholar 

  • Gros DB, Jongsma HJ (1996) Connexins in mammalian heart function. BioEssays 18:719–730

    PubMed  CAS  Google Scholar 

  • Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interactions: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143

    PubMed  CAS  Google Scholar 

  • Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68:138–149

    PubMed  CAS  Google Scholar 

  • Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck M-P (2004) Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tiss Res 315:157–166

    Google Scholar 

  • Hámori J (1981) Synaptic input to the axon hillock and initial segment of inhibitory interneurons in the cerebellar cortex of the rat. An electron microscopic study. Cell Tissue Res 217:553–562

    Google Scholar 

  • Harder DR, Zhang C, Gebremedhin D (2002) Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci 16:27–31

    Google Scholar 

  • Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mädfer M, Reichenbach A, Brückner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842:15–29

    PubMed  Google Scholar 

  • Haseloff RF, Blasig IE, Bauer H-C, Bauer H (2005) In search for the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell Molec Neurobiol 25:25–39

    PubMed  CAS  Google Scholar 

  • Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744

    PubMed  Google Scholar 

  • Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Progr Neurobiol 40:319–384

    CAS  Google Scholar 

  • Hirrlinger J, Hülsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239

    PubMed  Google Scholar 

  • Holländer H, Makarov F, Dreher Z, Van Driel D, Chan-Ling T, Stone J (1991) Structure of macroglia of the retina: sharing and division of labour between astrocytes and Müller cells. J Comp Neurol 313:587–603

    PubMed  Google Scholar 

  • Houades V, Rouach N, Ezan P, Kirchhoff F, Koulakoff A, Giaume C (2006) Shapes of astrocyte networks in the juvenile brain. Neuron Glia Biol 2:3–14

    PubMed  Google Scholar 

  • Hu R, Cai WQ, Wu XG, Yang Z (2007) Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. Neuroscience 144:1229–1240

    PubMed  CAS  Google Scholar 

  • Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KGV, Nagy JI, Rash JE (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86

    PubMed  CAS  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    PubMed  CAS  Google Scholar 

  • Kölliker RA (1896) Handbuch der Gewebelehre des Menschen, Bd 2.Leipzig: Engelmann

    Google Scholar 

  • Konietzko U, Müller CM (1994) Astrocytic dye coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C. Hippocampus 4:297–306

    PubMed  CAS  Google Scholar 

  • Kosaka K, Kosaka T (2005) Synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int 80:80–90

    PubMed  Google Scholar 

  • Krstic RV (1991) Human microscopic anatomy. An atlas for students of medicine and biology. SpringerBerlin

    Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    PubMed  CAS  Google Scholar 

  • Llinas R (1975) Electroresponsive properties of dendrites in central neurons. Adv Neurol 12:1–13

    PubMed  CAS  Google Scholar 

  • Llinas R, Nicholson C, Freeman JA, Hillman DE (1969) Dendritic spikes versus cable properties. Science 163:97

    PubMed  CAS  Google Scholar 

  • Miskevich F (1999) Laminar redistribution of a glial subtype in the chick optic tectum. Dev Brain Res 115:103–109

    CAS  Google Scholar 

  • Mombaerts P (2006) Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 22:713–737

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1958) Somatic functions of the nervous system. Ann Rev Physiol 20:471–508

    CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    PubMed  Google Scholar 

  • Müller CM (1992) A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. Int Rev Neurobiol 34:215–281

    PubMed  Google Scholar 

  • Müller CM, Best J (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342:427–430

    PubMed  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neuroscience 129:905–913

    PubMed  CAS  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32:29–44

    PubMed  CAS  Google Scholar 

  • Nagy JI, Ionescu A-V, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    PubMed  CAS  Google Scholar 

  • Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 47:191–215

    PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  • Nicchia GP, Nico B, Camassa LMA, Mola MG, Loh N, Dermietzel R, Spray DC, Svelto M, Frigeri A (2004) The role of aquaporin-4 in the blood–brain barrier development and integrity: studies in animal and cell culture models. Neuroscience 129:935–945

    PubMed  CAS  Google Scholar 

  • Ohira K, Funatsu N, Homma KJ, Sahara Y, Hayashi M, Kaneko T, Nakamura S (2007) Truncated TrkB-T1 regulates the morphology of neocortical layer I astrrocytes in adult rat brain slices. Eur J Neurosci 25:406–416

    PubMed  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    PubMed  CAS  Google Scholar 

  • Pannicke T, Iandiev I, Uckermann O, Biedermann B, Kutzera F, Wiedemann P, Wolburg H, Reichenbach A, Bringmann A (2004) A potassium-channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26:493–502

    PubMed  CAS  Google Scholar 

  • Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+. waves and spreading depression in the mouse neocortex J Neurosci 23:9888–9896

    PubMed  CAS  Google Scholar 

  • Pinching AJ (1971) Myelinated dendritic segments in the monkey olfactory bulb. Brain Res 29:133–138

    PubMed  CAS  Google Scholar 

  • Powell EM, Geller HM (1999) Dissection of astrocyte-mediated cues in neuronal guidance and process extension. Glia 26:73–83

    PubMed  CAS  Google Scholar 

  • Raine CS (1984) On the association between perinodal astrocytic processes and the node of Ranvier in the CNS. J Neurocytol 13:21–27

    PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83

    PubMed  CAS  Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54 Suppl 1:25–40

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. MaloineParis

    Google Scholar 

  • Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fractured analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388:265–292

    PubMed  CAS  Google Scholar 

  • Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21:1983–2000

    PubMed  CAS  Google Scholar 

  • Rash JE, Davidson KGV, Yasumura T, Furman CS (2004) Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly. Neuroscience 129:915–934

    PubMed  CAS  Google Scholar 

  • Reichenbach A (1989) Attempt to classify glial cells by means of their process specialization using the rabbit retinal Müller cell as an example of cytotopographic specialization of glial cells. Glia 2:250–259

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Henke A, Eberhardt W, Reichelt W, Dettmer D (1992) K+. ion regulation in retina Can J Physiol Pharmacol 70:S239–S247

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995) Distribution of Bergmann glial somata and processes: implications for function. J Hirnforsch 36:509–517

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Derouiche A, Grosche J, Hanani M (2004) Structural association of glia with the various compartments of neurons. Hatton GI, Parpura, V Glial Neuronal Signaling KluwerBoston, MA: 53–97.

    Google Scholar 

  • Reisin HD, Colombo JA (2002) Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cell Molec Neurobiol 22:633–644

    PubMed  CAS  Google Scholar 

  • Rice FL, Van der Loos H (1977) Development of the barrels and barrel field in the somatosensory cortex of the mouse. J Comp Neurol 171:545–560

    PubMed  CAS  Google Scholar 

  • Robinson SR, Hampson ECGM, Munro MN, Vaney DI (1993) Unidirectional coupling of gap junctions between neuroglia. Science 262:1072–1074

    PubMed  CAS  Google Scholar 

  • Rouach N, Pébay A, Même W, Cordier J, Ezan P, Etienne E, Giaume C, Tencé M (2006) S1P inhibits gap junctions in astrocytes: involvement of Gi and Rho GTPase/ROCK. Eur J Neurosci 23:1453–1464

    PubMed  Google Scholar 

  • Sajin B, Steindler DA (1994) Cells on the edge: boundary astrocytes and neurons. Perspect Dev Neurobiol 2:275–289

    PubMed  CAS  Google Scholar 

  • Sarantis M, Mobbs P (1992) The spatial relationship between Müller cell processes and the photoreceptor output synapse. Brain Res 584:299–304

    PubMed  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    PubMed  Google Scholar 

  • Schipke C, Haas B, Kettenmann H (2008) Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb Cortex, in press

    Google Scholar 

  • Shrager P, Chiu SY, Ritchie JM (1985) Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci U S A. 82:948–952

    PubMed  CAS  Google Scholar 

  • Silver J, Edwards MA, Levitt P (1993) Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J Comp Neurol 15:415–436

    Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    PubMed  CAS  Google Scholar 

  • Simionescu M, Ghinea N, Fixman A, Lasser M, Kukes L, Simionescu N, Palade GE (1988) The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J Submicrosc Cytol 20:243–261

    CAS  Google Scholar 

  • Sims DE (1986) The Pericyte. A review Tissue and Cell 18:153–174

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CCG, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    PubMed  CAS  Google Scholar 

  • Tabernero A, Medina JM, Giaume C (2006) Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 99:1049–1061

    PubMed  CAS  Google Scholar 

  • Treherne JE, Schofield PK, Lane NJ (1982) Physiological and ultrastructural evidence for an extracellular anion matrix in the central nervous system of an insect (Periplaneta americana). Brain Res 247:255–267

    PubMed  CAS  Google Scholar 

  • Treloar HB, Purcell AL, Greer C (1999) Glomerular formation in the developing rat olfactory bulb. J Comp Neurol 413:289–304

    PubMed  CAS  Google Scholar 

  • Verbavatz J-M, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci, 110:2855–2860

    CAS  Google Scholar 

  • Vogt C, Vogt O (1937) Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Variierens der Tiere. 1. Teil: Befunde der topistischen Hirnforschung als Beitrag zur Lehre vom Krankheitssitz. Leipzig: J.A. Barth

    Google Scholar 

  • Volterra A, Magistretti P, Haydon P (2002) The tripartite synapses: Glia in synaptic transmission. Oxford University PressOxford

    Google Scholar 

  • Wallraff A, Odermatt B, Willecke K, Steinhäuser C (2004) Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 489:36–43

    Google Scholar 

  • Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhäuser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    PubMed  CAS  Google Scholar 

  • Waxman SG (1986) The astrocyte as a component of the node of Ranvier. Trends Neurosci 9:250–253

    Google Scholar 

  • Wolburg H (2006) The endothelial frontier.Dermietzel R, Spray, DC Nedergaard, M Blood–brain barriers. From ontogeny to artificial interfacesWiley-VCHWeinheim: 77–107.

    Google Scholar 

  • Wolburg H (1995) Orthogonal arrays of intramembranous particles. A review with special reference to astrocytes. J Hirnforsch 36:239–258

    PubMed  CAS  Google Scholar 

  • Wolburg H, Bäuerle C (1993) Astrocytes in the lamina cribrosa of the rat optic nerve: are their morphological peculiarities involved in an altered blood–brain barrier? J Hirnforsch 34:445–459

    PubMed  CAS  Google Scholar 

  • Wolburg H, Risau W (1995) Formation of the blood–brain barrier. Kettenmann H Ransom B, Neuroglia Oxford University PressOxford: 763–776.

    Google Scholar 

  • Wolburg H, Warth A (2005) Endothelial cells, extracellular matrix and astrocytes: interplay for managing the blood–brain barrier. deVries E, Prat, A The blood–brain barrier and its microenvironmentTaylor & FrancisNew York, London: 359–386.

    Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Mack A, Reichenbach A (2007) Ependymoglia. Squire L, Albright, T Bloom, F Gage, F Spitzer, eds. N The New Encyclopedia of Neuroscience ElsevierOxford, UK

    Google Scholar 

  • Wolff J (1968) [The role of the astroglia in the brain tissue]. Acta Neuropathol Suppl 4:33–39

    Google Scholar 

  • Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected chinese hamster ovary cells. J Biol Chem 271:4577–4580

    PubMed  CAS  Google Scholar 

  • Zahs KR (1998) Heterotypic coupling between glial cells of the mammalian central nervous system. Glia 24:85–96

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Gert Brückner (Paul Flechsig Institute of Brain Research, Leipzig University), for many helpful discussions. The authors are grateful to Andreas Mack and Karen Wolburg-Buchholz (University of Tübingen) for providing Fig. 10.12b. Original work related to this chapter was supported by the Bundesministerium für Bildung, Forschung und Technologie, Interdisciplinary Center for Clinical Research at the University of Leipzig, 01KS9504, Project C-05 (AR), and by the Deutsche Forschungsgemeinschaft, RE 849–8/1 (AR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reichenbach, A., Wolburg, H. (2009). Structural association of astrocytes with neurons and vasculature: Defining territorial boundaries. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_10

Download citation

Publish with us

Policies and ethics