Skip to main content

Astrocyte Heterogeneity or Homogeneity?

  • Chapter
  • First Online:
Astrocytes in (Patho)Physiology of the Nervous System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C m :

Membrane capacitance

CNS:

Central nervous system

EAA:

Excitatory amino acid

E r :

Reversal potential

GFAP:

Glial fibrillary acidic protein

GS:

Glutamine synthetase

I–V :

Current–voltage

Q t :

Total charge

R a :

Electrode access resistance

R m :

Membrane resistance

R t :

Total resistance

V a :

Voltage drop across R a

V c :

Clamp (command) potential

V t :

Total voltage drop

[K+]o :

Extracellular concentration of potassium ions

[K+]i :

Intracellular concentration of potassium ions

References

  • Barres BA (1991a) Five electrophysiological properties of glial cells. Ann N Y Acad Sci 633:248–254.

    Article  CAS  Google Scholar 

  • Barres BA (1991b) Glial ion channels. Cur Opin Neurobiol 1:354–359.

    Article  CAS  Google Scholar 

  • Barres BA, Chun LLY, Corey DP (1990a) Ion channels in vertebrate glia. Annual Rev Neurosci 13:441–474.

    Article  CAS  Google Scholar 

  • Barres BA, Koroshetz WJ, Chun LLY, Corey DP (1990b) Ion channel expression by white matter glia: The type-1 astrocyte. Neuron 5:527–544.

    Article  CAS  Google Scholar 

  • Berl S, Lajtha A, Waelsch H (1961) Amino acid and protein metabolism – VI cerebral compartments of glutamic acid metabolism. J Neurochem 7:186–197.

    Article  CAS  Google Scholar 

  • Bignami A, Dahl D (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol 153:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Bordey A, Sontheimer H (1997) Postnatal development of ionic currents in rat hippocampal astrocytes in situ. J Neurophysiol 78:461–477.

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192.

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86.

    Article  PubMed  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278.

    Article  PubMed  CAS  Google Scholar 

  • Christianson GE (1984) In the presence of the creator: Isaac Newton and his *Times. The Free Press. New York:165

    Google Scholar 

  • D’Ambrosio R (2004) The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Ther 103:95–108.

    Article  PubMed  Google Scholar 

  • D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, Moss SJ, Haydon PG (2007) mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 104:1995–2000.

    Article  PubMed  Google Scholar 

  • Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na+ + K+]coupled l. -glutamate transporter purified from rat brain is located in glial cell processes Neurosci 51:295–310.

    Article  CAS  Google Scholar 

  • Dierig S (1994) Extending the neuron doctrine: Carl Ludwig Schleich (1859–1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. Trends Neurosci 17:449–452.

    Article  PubMed  CAS  Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365.

    Article  PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335:393–426.

    PubMed  CAS  Google Scholar 

  • Golgi C (1885) Sulla fina anatomia degli organi centrali del sisterma nervoso. Riv Sper Fremiat Med Leg Alienazione Ment 11:72–123.

    Google Scholar 

  • Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A, Hansson H-A, Sellstrom A (1975) Scanning and transmission electron microscopy on bulk prepared neuronal and glial cells. Exp Cell Res 92:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031.

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1966) Nerve, muscle and synapse. McGraw-Hill. New York

    Google Scholar 

  • Kettenmann H, Ransom B (2005) The concept of neuroglia: a historical perspective. In: Kettenmann H, Ransom B, Neuroglia Oxford University Press. New York: 1–16.

    Google Scholar 

  • Kimelberg HK (1983) Primary astrocyte cultures – a key to astrocyte function. Cell Mol Neurobiol 3:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK (2001) Glia–neuronal culture models – do we need to change the paradigms? Trends Neurosci 24:205–206.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK (2004) The problem of astrocyte identity. Neurochem Int 45:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Schools GP, Zhou M (2000) Freshly isolated astrocyte (FIA) preparations; a useful single cell system for studying astrocyte properties. J Neurosci Res 61:577–587.

    Article  PubMed  CAS  Google Scholar 

  • Koch C (2004) The quest for consciousness; a neurobiological approach. Roberts. Englewood, CO: 1789

    Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787.

    PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683.

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, Card JP (1987) Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth protoplasmic astrocytes. J Neurosci 7:2711–2720.

    PubMed  CAS  Google Scholar 

  • Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266.

    Article  PubMed  CAS  Google Scholar 

  • Lugaro E (1907) Sulle Funzioni Della Nevroglia. Riv D Pat Nerv Ment 12:225–233.

    Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A, Bell K, Norenberg MD (1977) Gltutamine synthetase: glial localization in brain. Science 195:1356–1358.

    Article  PubMed  CAS  Google Scholar 

  • Massa PT, Mugnaini E (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 7:523–538.

    Article  PubMed  CAS  Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse. J Neurosci 23:1750–1758.

    PubMed  CAS  Google Scholar 

  • Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715.

    Article  PubMed  Google Scholar 

  • Neher E, Sakmann B (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann Rev Physiol 46:455–472.

    Article  Google Scholar 

  • Newman EA (1984) Regional specialization of retinal glial cell membrane. Nature 309:155–158.

    Article  PubMed  CAS  Google Scholar 

  • Newman EA (1995) Glial cell regulation of extracellular potassium. In: Kettenmann H, Ransom B, NeurogliaOxford University Press. Oxford:717–731.

    Google Scholar 

  • Nishiyama A, Yang Z, Butt A (2005) Astrocytes and NG2-glia: what’s in a name? J Anat 207:687–693.

    Article  PubMed  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553.

    Article  PubMed  CAS  Google Scholar 

  • Olsen ML, Sontheimer H (2005) Voltage-activated ion channels in glial cells. In: Kettenmann H, Ransom BR, eds), pp. NeurogliaOxford University Press. Oxford: 112–130.

    Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806.

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116.

    Article  PubMed  CAS  Google Scholar 

  • Picker S, Pieper CF, Goldring S (1981) Glial membrane potentials and their relationship to [K+]o. in man and guinea pig J Neurosurg 55:347–363.

    Article  PubMed  CAS  Google Scholar 

  • Purves RD (1981) Microelectrode methods for intracellular recording and ionophoresis. Academic. London

    Google Scholar 

  • Ramon y Cajal S (1913) Contribucion al conocimento de la neuroglia del cerebro humano. Trab Lab Invest Biol Univ Madrid 11:255–315.

    Google Scholar 

  • Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom B, eds), pp. NeurogliaOxford University Press. New York: 19–35.

    Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang YF, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    Article  PubMed  CAS  Google Scholar 

  • Schools GP, Zhou M, Kimelberg HK (2006) Development of gap junctions in hippocampal astrocytes: evidence that whole cell electrophysiological phenotype is an intrinsic property of the individual cell. J Neurophysiol 96:1383–1392.

    Article  PubMed  Google Scholar 

  • Sherman-Gold S. (1993) The Axon guide for electrophysiology and biophysics laboratory techniques. Axon Instruments. Foster City, CA

    Google Scholar 

  • Slezak M, Goritz C, Niemiec A, Frisen J, Chambon P, Metzger D, Pfrieger FW (2007) Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55:1565–1576.

    Article  PubMed  Google Scholar 

  • Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1:2–9.

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1995) Electrophysiology of mammalian glial cells in situ. In: Neuroglia (Kettenmann H, Ransom BR, eds),Oxford University Press. Oxford: 319–331.

    Google Scholar 

  • Sontheimer H (1995) Whole-cell patch-clamp recordings. In: Boulton A, Baker GB, Walz W, eds), pp. Patch-clamp applications and protocolsHumana. Totowa, New Jersey: 37–74.

    Chapter  Google Scholar 

  • Steinhauser C (1993) Electrophysiologic characteristics of glial cells. Hippocampus 3:113–124.

    Article  PubMed  Google Scholar 

  • Steinhauser C, Kressin K, Kuprijanova E, Weber M, Seifert G (1994) Properties of voltage-activated Na+ and K+ currents in mouse hippocampal glial cells in situ and after acute isolation from tissue slices. Pflugers Arch 428:610–620.

    Article  PubMed  CAS  Google Scholar 

  • Taylor FS (1949) Science: past and present. William Heinemann. Melbourne

    Google Scholar 

  • Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412.

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640.

    Article  PubMed  CAS  Google Scholar 

  • Wallraff A, Odermatt B, Willecke K, Steinhauser C (2004) Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48:36–43.

    Article  PubMed  Google Scholar 

  • Walz W (2000) Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter. Glia 31:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Kimelberg HK (2000) Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K+]o. uptake capabilities J Neurophysiol 84:2746–2757.

    PubMed  CAS  Google Scholar 

  • Zhou M, Schools GP, Kimelberg HK (2000) GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns. Molec Brain Res 76:121–131.

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Schools GP, Kimelberg HK (2006) Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95:134–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Drs. Gary Schools and Min Zhou for discussions and reading the manuscript and for supplying some of the figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kimelberg, H. (2009). Astrocyte Heterogeneity or Homogeneity?. In: Haydon, P., Parpura, V. (eds) Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79492-1_1

Download citation

Publish with us

Policies and ethics