The Maize Root System: Morphology, Anatomy, and Genetics

  • Frank Hochholdinger

Abstract

Maize root system architecture is determined by distinct embryonic and postembryonic root types that are formed during different phases of development. While embryonically preformed roots dominate the early seedling root system, the adult root stock is determined by an extensive shoot borne root stock. Although the cellular organization of all root types is similar specific mutants imply complex genetic programs that regulate maize root system formation. Recently, the first genes that are involved in shoot borne root formation and root hair formation have been cloned. Moreover, proteome and cell type specific transcriptome analyses gave initial cues on the complex molecular networks involved in maize root system development.

References

  1. Abbe, E.C. and Stein, O.L. (1954) The origin of the shoot apex in maize: embryogeny. Am. J. Bot 41: 285–293.CrossRefGoogle Scholar
  2. Aiken, R.M. and Smucker, A.J.M. (1996) Root system regulation of whole plant growth. Annu. Rev. Phytopathol. 34: 325–346.CrossRefPubMedGoogle Scholar
  3. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organsims. Annu. Rev. Plant Biol. 57: 233–266.CrossRefPubMedGoogle Scholar
  4. Bell, J.K. and McCully, M.E. (1970) A histological study of lateral root initiation and development in Zea mays Protoplasma 70: 179–205.CrossRefGoogle Scholar
  5. Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A. and Benfey, P.N. (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143: 172–187.CrossRefPubMedGoogle Scholar
  6. Charlton, W.A. (1991) Lateral root initiation in plant roots. In: Plant Roots: The Hidden half (Y. Waisel, A. Eshel, U. Kafkafi, eds. Marcel Dekker, New York, pp. 107–128.Google Scholar
  7. Chen, J.-G. (2001) Dual auxin signaling pathways control cell elongation and division. J. Plant Growth Regul. 20: 255–264.CrossRefGoogle Scholar
  8. Colasanti, J., Tyers, M. and Sundaresan, V. (1991) Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays. Proc. Natl. Acad. Sci. USA 88: 3377–3381.CrossRefPubMedGoogle Scholar
  9. Colasanti, J., Cho, S.O., Wick, S. and Sundaresan, V. (1993) Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites. Plant Cell 5: 1101–1111CrossRefPubMedGoogle Scholar
  10. Dembinsky, D., Woll, K., Saleem, M., Liu, Y., Fu, Y., Borsuk, L.A., Lamkemeyer, T., Fladerer, C., Madlung, J., Barbazuk, B., Nordheim, A., Nettleton, D., Schnable, P.S., and Hochholdinger, F. (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize ( Zea mays L.) primary root. Plant Physiol. 145: 575–588.CrossRefPubMedGoogle Scholar
  11. Drew, M.C. and Saker, L.R. (1975) Nutrient supply and the growth of the seminal root system in barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26: 79–90.CrossRefGoogle Scholar
  12. Drew, M.C. and Saker, L.R. (1978) Nutrient supply and the growth of the seminal root system in barley. III Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 109: 435–451.CrossRefGoogle Scholar
  13. Emerson, R.A., Beadle, G.W. and Fraser, A.C. (1935) A summary of linkage studies in maize. Cornell Univ. Agr. Exp. Stat. Mem. 180: 40–42.Google Scholar
  14. Elias, M., Drdova, E., Ziak, D., Bavlnka, B., Hala, M., Cvrckova, F., Soukupova, H. and Zarsky, V. (2003) The exocyst complex in plants. Cell Biol. Int. 27: 199–201.CrossRefPubMedGoogle Scholar
  15. Erdelska, O. and Vidovencova, Z. (1993) Development of adventitious seminal root primordia during embryogenesis. Biologia 48: 85–88.Google Scholar
  16. Esau, K. (1965) Plant Anatomy, 2nd edn. John Wiley and Sons, New York.Google Scholar
  17. Fahn, A. (1990) Plant Anatomy, 4th edn. Pergamon Press, New York.Google Scholar
  18. Feix, G., Hochholdinger, F. and Park, W.J. (2002) Maize root system and genetic analysis of its formation. In: Plant Roots the Hidden half (Y. Waisel, A. Eshel and U. Kafkafi eds.) Marcel Dekker, New York.Google Scholar
  19. Feldman, L. (1994) The maize root. In: The Maize Handbook (M. Freeling and V. Walbot eds.) Springer, New York pp. 29–37.Google Scholar
  20. Hawes, M.C., Brigham, L.A., Wen, F., Woo, H.H. and Zhu, Y. (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu. Rev. Phytopathol. 36: 311–327.CrossRefPubMedGoogle Scholar
  21. Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G. (1996) Isolation and characterisation of rtcs a mutant deficient in the formation of nodal roots. Plant J. 10: 845–857.CrossRefGoogle Scholar
  22. Hochholdinger, F. and Feix, G. (1998a) Early post-embryonic root formation is specifically affected in the maize mutant lrt1 Plant J. 16: 247–255.CrossRefGoogle Scholar
  23. Hochholdinger, F. and Feix, G. (1998b) Cyclin expression is completely suppressed at the site of crown root formation in the nodal region of the maize root mutant rtcs. J. Plant Physiol. 153: 425–429.Google Scholar
  24. Hochholdinger, F. and Feix, G. (1998c) Tiller formation in Gaspe Flint is not affected by the rtcs mutation. Maize Genet. Coop. Newsl. 72: 31–32.Google Scholar
  25. Hochholdinger, F., Park, W.J. and Feix, G. (2001) Cooperative action of SLR1 and SLR2 is required for lateral root specific cell-elongation in maize. Plant Physiol. 125: 1529–1539.CrossRefPubMedGoogle Scholar
  26. Hochholdinger, F., Park, W.J., Sauer, M. and Woll, K. (2004a) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci. 9: 42–48.CrossRefGoogle Scholar
  27. Hochholdinger, F., Woll, K., Sauer, M. and Dembinsky, D. (2004b) Genetic dissection of root formation in maize ( Zea mays) reveals root type specific developmental programs. Ann. Bot 93: 359–368.CrossRefGoogle Scholar
  28. Hochholdinger, F., Guo, L. and Schnable, P.S. (2004c) Lateral roots affect the proteome of the primary root of maize ( Zea mays L.). Plant Mol. Biol. 56: 397–412.CrossRefGoogle Scholar
  29. Hochholdinger, F., Woll, K., Sauer, M. and Feix, G. (2005a) Functional genomic tools in support of the genetic analysis of root development in maize ( Zea mays L.). Maydica (50th anniversary edition) 50: 437–442.Google Scholar
  30. Hochholdinger, F., Woll, K., Guo, L. and Schnable, P.S. (2005b) Analysis of the soluble proteome of maize ( Zea mays L.) primary roots reveals drastic changes in protein composition during early development. Proteomics 18: 4885–4893.CrossRefGoogle Scholar
  31. Hochholdinger, F., Sauer, M., Dembinsky, D., Hoecker, N., Muthreich, N., Saleem, M. and Liu, Y. (2006) Proteomic dissection of plant development. Proteomics 6: 4076–4083.CrossRefPubMedGoogle Scholar
  32. Hochholdinger, F., Wen, T.J., Zimmermann, R., Chimot-Marolle, P., da Costa e Silva, O., Bruce, W., Lamkey, K.R., Wienand, U. and Schnable, P.S. (2008) The maize ( Zea mays L.) roothairless 3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J. 54: 888–898.CrossRefPubMedGoogle Scholar
  33. Hoppe, D.C., McCully, M.E. and Wenzel, C.L. (1986) The nodal roots of Zea: their development in relation to structural features of the stem. Can. J. Bot. 64: 2524–2537.CrossRefGoogle Scholar
  34. Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L. and Hartung, W. (2001) The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52: 2245–2264.CrossRefPubMedGoogle Scholar
  35. Ishikawa, H. and Evans, M.L. (1995) Specialized zones of development in roots. Plant Physiol 109: 725–727.PubMedGoogle Scholar
  36. Jenkins, M.T. (1930) Heritable characters of maize XXXIV-rootless. J. Hered. 21: 79–80.Google Scholar
  37. Jiang, K., Meng, Y.L. and Feldman, L.J. (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130: 1429–1438.CrossRefPubMedGoogle Scholar
  38. Kausch, W. (1967) Lebensdauer der Primärwurzel von Monokotyledonen. Naturwissenschaften 54: 475.CrossRefGoogle Scholar
  39. Kiesselbach, T.A. (1949) The root system. In: The Structure and Reproduction of Corn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor pp. 16–25.Google Scholar
  40. Kozinka, V. (1977) Primary seminal root, a permanent part of the root system of Zea mays. L. Biologia 32: 779–786.Google Scholar
  41. Lawson, W.E. and Hanway, J.J. (1977) Corn production. In: Corn and Corn Improvement. (G.F. Sprague ed.American Society of Agronomy Publishers, Madison pp. 625–669.Google Scholar
  42. Liu, Y., Lamkemeyer, T., Jakob, A., Mi,G., Zhang, F., Nordheim, A. and Hochholdinger, F. (2006) Comparative proteome analyses of maize ( Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1 Proteomics 6: 4300–4308.CrossRefGoogle Scholar
  43. Lynch, J. (1995) Root architecture and plant productivity. Plant Physiol. 109: 7–13.PubMedGoogle Scholar
  44. Martin, E.M. and Harris, W.M. (1976) Adventitious root development from the coleoptilar node in Zea mays L. Am. J. Bot. 63: 890–897.CrossRefGoogle Scholar
  45. McCully, M.E. (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 697–718.CrossRefGoogle Scholar
  46. McCully, M.E. and Canny, M.J. (1985) Localization of translocated 14 C in roots and root exudates of field-grown maize. Physiol. Plant. 65: 380–392.CrossRefGoogle Scholar
  47. McCully, M.E. and Canny, M.J. (1988) Pathways and processes of water and nutrient movements in roots. Plant Soil 111: 159–170.CrossRefGoogle Scholar
  48. Neuffer, M.G., Coe, E.H and Wessler, S.R. (1997) Mutants of Maize. Cold Spring Harbor Laboratory Press, Woodbury, NY.Google Scholar
  49. Paszkowski, U. and Boller, T. (2002) The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214: 584–590.CrossRefPubMedGoogle Scholar
  50. Renaudin, J.P., Colasanti, J., Rime, H., Yuan, Z. and Sundaresan, V. (1994) Cloning of four cyclins from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins. Proc. Natl. Acad. Sci. USA 91: 7375–7379.CrossRefPubMedGoogle Scholar
  51. Row, H.C. and Reeder, J.R. (1957) Root-hair development as evidence of relationships among genera of gramineae. Am. J. Bot. 44: 596–601.CrossRefGoogle Scholar
  52. Sass, J.E. (1977) Morphology. In: Corn and Corn Improvement (G.F. Sprague ed.) American Society of Agronomy Publishers, Madison pp. 89–110.Google Scholar
  53. Sauer, M., Jakob, A., Nordheim, A. and Hochholdinger, F. (2006) Proteomic analysis of shoot-borne root initiation in maize ( Zea mays L.). Proteomics 6: 2530–2541.CrossRefPubMedGoogle Scholar
  54. Schiefelbein, J.W. (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr. Opin. Plant Biol. 6: 74–78.CrossRefPubMedGoogle Scholar
  55. Schnable, P.S., Hochholdinger, F. and Nakazono, M. (2004) Global expression profiling applied to plant development. Curr. Opin. Plant Biol. 7: 50–56.CrossRefPubMedGoogle Scholar
  56. Taramino, G., Sauer, M., Stauffer, J., Multani, D., Niu, X., Sakai, H. and Hochholdinger, F. (2007) The rtcs gene in maize ( Zea mays L.) encodes a lob domain protein that is required for postem-bryonic shoot-borne and embryonic seminal root initiation. Plant J. 50: 649–659.CrossRefPubMedGoogle Scholar
  57. Tillich, H.J. (1977) Vergleichend morphologische Untersuchungen zur Identität der Gramineen-Primärwurzel. Flora 166: 415–421.Google Scholar
  58. Tillich, H.J. (1992) Bauprinzipien und Evolutionslinien bei monokotylen Keimpflanzen. Bot. Jahrb. System 114: 91–132.Google Scholar
  59. Varney, G.T. and McCully, M.E. (1991) The branch roots of Zea. II. Developmental loss of the apical meristem in field-grown roots. New Phytol. 118: 535–546.CrossRefGoogle Scholar
  60. Varney, G.T. and Canny, M.J. (1993) Rates of water uptake into the mature root system of maize plants. New Phytol. 123: 775–786.CrossRefGoogle Scholar
  61. Varney, G.T., Canny, M.J., Wang, X.L. and McCully, M.E. (1991) The branch roots of Zea. I. Firstorder branches, their number, sizes and division into classes. Ann. Bot. 67: 357–364.Google Scholar
  62. Wang, X.L., Canny, M.J. and McCully, M.E. (1991) The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant 82: 157–162.CrossRefGoogle Scholar
  63. Wang, X.L., McCully, M.E. and Canny, M.J. (1994) The branch roots of Zea. IV. The maturation and openness of xylem conduits in first-order branches of soil-grown roots. New Phytol. 126: 21–29.CrossRefGoogle Scholar
  64. Wang, X.L., McCully, M.E. and Canny, M.J. (1995) Branch roots of Zea. V. Structural features that may influence water and nutrient transport. Bot. Acta 108: 209–219.Google Scholar
  65. Watt, M., Silk, W.K. and Passioura, J.B. (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann. Bot. 97: 839–855.CrossRefPubMedGoogle Scholar
  66. Wen, T.J. and Schnable, P.S. (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81: 833–843.CrossRefGoogle Scholar
  67. Wen, T.J., Hochholdinger, F., Sauer, M., Bruce, W. and Schnable, P.S. (2005) The roothairless1 gene of maize ( Zea mays) encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol. 138: 1637–1643.CrossRefPubMedGoogle Scholar
  68. Woll, K., Borsuk, L., Stransky, H., Nettleton, D., Schnable, P.S. and Hochholdinger, F. (2005) Isolation, characterization and pericycle specific transcriptome analyses of the novel maize ( Zea mays L.) lateral and seminal root initiation mutant rum1. Plant Physiol. 139: 1255–1267.CrossRefPubMedGoogle Scholar
  69. Yamashita, T. (1991) Ist die Primärwurzel bei Samenpflanzen exogen oder endogen? Beitr. Biol. Pflanz. 66: 371–391.Google Scholar
  70. Yang, T. and Poovaiah, B.W. (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 275: 3137–3143.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Frank Hochholdinger

There are no affiliations available

Personalised recommendations