Skip to main content

Patterning of the Maize Embryo and the Perspective of Evolutionary Developmental Biology

  • Chapter

Abstract

Genetic and molecular analyses in the dicot model plant Arabidopsis thaliana have identified numerous genes and different regulatory networks involved in embryonic patterning. Many genes encode members of transcription factor families. Orthologous genes can be identified by phylogenetic reconstructions based on conserved protein domains and functionally substantiated by gene expression patterns and mutant analyses. However, interspecies comparisons are necessary to validate networks identified in model species on the evolutionary scale. Comparative analyses between maize and Arabidopsis reveal both a significant conservation of gene expression patterns and thus presumably function as well as the evolutionary freedom for adaptation in the course of plant speciation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbe, E. C. and Stein, O. L. (1954). The growth of the shoot apex in maize: embryogeny. Am J Bot 41, 285–298.

    Article  Google Scholar 

  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9 841–857.

    Article  CAS  PubMed  Google Scholar 

  • Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563–1570.

    CAS  PubMed  Google Scholar 

  • Barton, M. K. and Poethig, R. S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana : an analysis of development in the wild type and in the shoot meristemless mutant. Development 119, 823–831.

    Google Scholar 

  • Berleth, T. and Chatfield, S. (2002). Embryogenesis: Pattern Formation from a Single Cell. In: C.R. Somerville and E. M. Meyerowitz (eds.), The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists.

    Google Scholar 

  • Bommert, P. and Werr, W. (2001). Gene expression patterns in the maize caryopsis: clues to decisions in embryo and endosperm development. Gene 271, 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, J. W., Cole, M., Flier, A., Grewe, B., and Werr, W. (2007). The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134, 1653–1662.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J. K. and Sheridan, W. F. (1991). Isolation and characterization of 51 embryo-specific mutations of maize. The Plant Cell 3, 935–951.

    Article  PubMed  Google Scholar 

  • Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Giuliani, C., Consonni, G., Gavazzi, G., Colombo, M., and Dolfini, S. (2002). Programmed cell death during embryogenesis in maize. Ann Bot (Lond) 90, 287–292.

    Article  Google Scholar 

  • Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668.

    Article  CAS  PubMed  Google Scholar 

  • Hueros, G., Varotto, S., Salamini, F., and Thompson, R. D. (1995). Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7, 747–757.

    Article  CAS  PubMed  Google Scholar 

  • Ingram, G. C., Magnard, J. L., Vergne, P., Dumas, C., and Rogowsky, P. M. (1999). ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol Biol 40, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Ingram, G. C., Boisnard-Lorig, C., Dumas, C., and Rogowsky, P. M. (2000). Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant J 22, 401–414.

    Article  CAS  PubMed  Google Scholar 

  • Johansen, D. E. (1950). Plant Embryology: Embryogeny of the Spermatophyta. Chronica Botanica Co., Waltham, Massachusetts.

    Google Scholar 

  • Jurgens, G. (1992). Pattern formation in the flowering plant embryo. Curr Opin Genet Dev 2 567–570.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y., and Matsuoka, M. (2003). Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35, 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, D. R. (1973). The monocotyledons: their evolution and comparative biology. VII. The problem of leaf morphology and evolution in themonocotyledons. Q Rev Biol 48, 437–457.

    Article  Google Scholar 

  • Kerstetter, R. A., Laudencia-Chingcuanco, D., Smith, L. G., and Hake, S. (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective on shoot meristem maintenance. Development 124, 3045–3054.

    CAS  PubMed  Google Scholar 

  • Kirch, T., Simon, R., Grunewald, M., and Werr, W. (2003). The DORNROESCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. Plant Cell15, 694–705.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J., Helariutta, Y., Specht, C. D., Jung, J., Sims, L., Bruce, W. B., Diehn, S., and Benfey, P. N. (2000). Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 12, 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J., Jung, J. W., Lim, C. E., Lee, M. H., Kim, B. J., Kim, M., Bruce, W. B., and Benfey, P. N. (2005). Conservation and diversification of SCARECROW in maize. Plant Mol Biol 59 619–630.

    Article  CAS  PubMed  Google Scholar 

  • Magnard, J. L., Heckel, T., Massonneau, A., Wisniewski, J. P., Cordelier, S., Lassagne, H., Perez, P., Dumas, C., and Rogowsky, P. M. (2004). Morphogenesis of maize embryos requires ZmPRPL35-1 encoding a plastid ribosomal protein. Plant Physiol 134, 649–663.

    Article  CAS  PubMed  Google Scholar 

  • Malpighi, M. (1687). Opera omnia seu thesaurus locupletissimus botanico-medico-anatomicus. Apud Petrum Vander. Lugduni Batavorum, 1–379.

    Google Scholar 

  • Nardmann, J. and Werr, W. (2006). The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol Biol Evol 23, 2492–2504.

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., Ji, J., Werr, W., and Scanlon, M. J. (2004). The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827–2839.

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., and Werr, W. (2007). WOX gene phy-logeny in poaceae: a comparative approach addressing leaf and embryo development. Mol Biol Evol Sep 3. [Epub ahead of print]

    Google Scholar 

  • Poethig, R. S., Coe, E. H., andJohri, M. M. (1986). Cell lineage patterns in maize embryogenesis: a clonal analysis. Dev Biol 117, 392–404.

    Article  Google Scholar 

  • Randolph, L. F. (1936). Developmental morphology of the caryopsis in maize. J Agric Res 53 881–916.

    Google Scholar 

  • Reeder, J. R. (1953). The embryo of streptochaeta and its bearing on the homology of the coleop-tile. Am J Bot 40, 77–80.

    Article  Google Scholar 

  • Sarkar, A. K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T. (2007). Conserved factors regulate signalling in Arabidopsis thal-iana shoot and root stem cell organizers. Nature 446, 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. L., Jackson, D., and Hake, S. (1995). Expression of knotted1 marks shoot meristem formation during maize embryogenesis. Dev Genet 16, 344–348.

    Article  Google Scholar 

  • Sossountzov, L., Ruiz-Avila, L., Vignols, F., Jolliot, A., Arondel, V., Tchang, F., Grosbois, M., Guerbette, F., Miginiac, E., Delseny, M., (1991). Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3, 923–933.

    Article  CAS  PubMed  Google Scholar 

  • Thoma, S., Kaneko, Y., and Somerville, C. (1993). A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J3, 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Vernoud, V., Hajduch, M., Khaled, A.-S., Depège, N., and Rogowsky, P. M. (2005). Maize embryogenesis. Maydica 50, 469–484.

    Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N., and Hake, S. (1991). The developmental gene knotted-1 is a member of a maize homeobox gene family. Nature 350, 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw, C. W. (1955). Embryogenesis in Plants. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Weatherwax, P. (1920). The homologies of the position of the coleoptile and the scutellum in maize. Bot Gaz 69, 73–90.

    Article  Google Scholar 

  • Zimmermann, R. and Werr, W. (2005). Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L. Plant Mol Biol 58, 669–685.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, R. and Werr, W. (2007). Transcription of the putative maize orthologue of the Arabidopsis DORNROSCHEN gene marks early asymmetry in the proembryo and during leaf initiation in the shoot apical meristem. Gene Expr Patterns 7, 158–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Nardmann, J., Werr, W. (2009). Patterning of the Maize Embryo and the Perspective of Evolutionary Developmental Biology. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_6

Download citation

Publish with us

Policies and ethics