Skip to main content

The Maize Male Gametophyte

  • Chapter
Handbook of Maize: Its Biology

Abstract

The maize male gametophyte is a biologically complex component in seed production, and is of great interest for both practical and scientific reasons. In the anther of the stamen, a well-characterized series of developmental events produces the haploid pollen grain, which is released for pollination of the silk and subsequent fertilization of the embryo sac. Use of biochemical, cell biological, and genetic techniques has provided insight into the mechanisms underlying these developmental changes. Here, we provide a basic description of these events. We also highlight recent results that inform our understanding of male gametophytic development and function, as well as features of maize that make it an attractive alternative to other plant models for investigating the male gametophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschbacher, R.A., Hauser, M.T., Feldmann, K.A., and Benfey, P.N. (1995). The SABRE.gene is required for normal cell expansion in Arabidopsis Genes Dev. 9: 330–340.

    CAS  Google Scholar 

  • Ahlers, F., Bubert, H., Steuernagel, S., and Wiermann, R. (2000). The nature of oxygen in sporo-pollenin from the pollen of Typha angustifolia.L. Z. Naturforsch. [C].55: 129–136.

    CAS  Google Scholar 

  • Albertsen, M.C., and Phillips, R.L. (1981). Developmental cytology of 13 genetic male sterile loci in maize. Can. J. Genet. Cytol. 23: 195–208.

    Google Scholar 

  • Arthur, K., Vejlupkova, Z., Meeley, R., and Fowler, J. (2003). Maize ROP2 GTPase provides a competitive advantage to the male gametophyte . Genetics.165: 2137–2151.

    CAS  PubMed  Google Scholar 

  • Beadle, G.W. (1932). Genes in maize for pollen sterility. Genetics.17: 413–431.

    CAS  PubMed  Google Scholar 

  • Bedinger, P., and Edgerton, M. (1990). Developmental staging of maize microspores reveals a transition in developing microspore proteins . Plant Physiol. 92: 474–479.

    Article  CAS  PubMed  Google Scholar 

  • Bedinger, P., and Russell, S.D. (1994). Gametogenesis in maize. In The Maize Handbook, M Freeling and V. Walbot, eds New York: (Springer-Verlag), pp. 48–61.

    Google Scholar 

  • Bernasconi, G., Ashman, T.L., Birkhead, T.R., Bishop, J.D., Grossniklaus, U., Kubli, E., Marshall, D.L., Schmid, B., Skogsmyr, I., Snook, R.R., Taylor, D., Till-Bottraud, I., Ward, P.I., Zeh, D.W., and Hellriegel, B. (2004). Evolutionary ecology of the prezygotic stage. Science.303: 971–975.

    Article  CAS  PubMed  Google Scholar 

  • Bih, F.Y., Wu, S.S., Ratnayake, C., Walling, L.L., Nothnagel, E.A., and Huang, A.H. (1999). The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tape-tum mRNA with a long 5′ leader. J. Biol. Chem. 274: 22884–22894.

    Article  CAS  PubMed  Google Scholar 

  • Blackmore, S., Wortley, A.H., Skvarla, J.J., and Rowley, J.R. (2007). Pollen wall development in flowering plants. New Phytol. 174: 483–498.

    Article  CAS  PubMed  Google Scholar 

  • Booy, G., Krens, F.A., and Bino, R.J. (1992). Analysis of pollen-tube growth in cultured maize silks. Sex Plant Reprod. 5: 227–231.

    Article  Google Scholar 

  • Brettschneider, R., Becker, D., and Lörz, H. (1997). Efficient transformation of scutellar tissue of immature maize embryos . Theor. Appl. Genet. 94: 737–748.

    Article  CAS  Google Scholar 

  • Carlson, W.R. (2007). Locating a site on the maize B chromosome that controls preferential fertilization. Genome.50: 578–587.

    Article  CAS  PubMed  Google Scholar 

  • Chang, M.T., and Neuffer, M.G. (1989). Maize microsporogenesis. Genome.32: 232–244.

    Google Scholar 

  • Chaubal, R., Anderson, J.R., Trimnell, M.R., Fox, T.W., Albertsen, M.C., and Bedinger, P. (2003). The transformation of anthers in the msca1.mutant of maize . Planta.216: 778–788.

    CAS  PubMed  Google Scholar 

  • Chaubal, R.C., Zanella, C., Trimnell, M.R., Fox, T.W., Albertsen, M.C., and Bedinger, P. (2000). Two male-sterile mutants of Zea mays.(Poaceae) with an extra cell division in the anther wall . Am. J. Bot. 87: 1193–1201.

    Article  PubMed  Google Scholar 

  • Cheng, P.C., Greyson, R.I., and Walden, D.B. (1979). Comparison of anther development in genic male-sterile ( ms10.) and in male-fertile corn ( Zea mays.) from light microscopy and scanning electron microscopy. Can. J. Bot. 57: 578–596.

    Article  Google Scholar 

  • Cigan, A.M., Unger, E., Xu, R.J., Kendall, T., and Fox, T.W. (2001). Phenotypic complementation of ms45.maize requires tapetal expression of MS45 . Sex Plant Reprod. 14: 135–142.

    Article  CAS  Google Scholar 

  • Cigan, A.M., Unger-Wallace, E., and Haug-Collet, K. (2005). Transcriptional gene silencing as a tool for uncovering gene function in maize . Plant J. 43: 929–940.

    Article  CAS  PubMed  Google Scholar 

  • Clokey, I.W., and Anderson, E.G. (1938). Ms20 Maize Genet. Coop. News Lett. 12: 6.

    Google Scholar 

  • Cole, R.A., and Fowler, J.E. (2006). Polarized growth: maintaining focus on the tip. Curr. Opin. Plant Biol. 9: 579–588.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D., Bedinger, P., and Durachko, D. (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA.94: 6559–6564.

    Article  CAS  PubMed  Google Scholar 

  • D'Amato, F. (1984). Role of polyploidy in reproductive organs and tissues. In Embryology of Angiosperms, B.M. Johri, ed. (Berlin, Germany: Springer-Verlag), pp. 519–566.

    Google Scholar 

  • Datta, R., Chamusco, K.C., and Chourey, P.S. (2002). Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize . Plant Physiol. 130: 1645–1656.

    Article  CAS  PubMed  Google Scholar 

  • Davis, G. (1966). Systematic Embryology of the Angiosperms. (New York: John Wiley and Sons).

    Google Scholar 

  • Dominguez, E., Mercado, J.A., Quesada, M.A., and Heredia, A. (1999). Pollen sporopollenin: degradation and structural elucidation . Sex Plant Reprod. 12: 171–178.

    Article  CAS  Google Scholar 

  • El-Ghazaly, G., and Jensen, W.A. (1985). Studies of the development of wheat ( Triticum aesti-vum.) pollen. III. Formation of microchannels in the exine. Pollen et Spores.27: 5–14.

    Google Scholar 

  • El-Ghazaly, G., and Jensen, W.J. (1986). Studies of the development of wheat ( Triticum aestivum.) pollen: I. Formation of the pollen wall and Ubisch bodies. Grana.25: 1–29.

    Google Scholar 

  • El-Ghazaly, G., and Jensen, W.A. (1987). Development of wheat ( Triticum aestivum.) pollen. II. Histochemical differentiation of wall and Ubisch bodies during development. Am. J. Bot. 74: 1396–1418.

    Article  Google Scholar 

  • Engel, M., Holmes-Davis, R., and McCormick, S. (2005). Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol. 138: 2124–2133.

    Article  CAS  PubMed  Google Scholar 

  • Engel, M.L., Chaboud, A., Dumas, C., and McCormick, S. (2003). Sperm cells of Zea mays have a complex complement of mRNAs . Plant J. 34: 697–707.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M.M.S., and Kermicle, J. (2001a). Interaction between maternal effect and zygotic effect mutations during maize seed development . Genetics.159: 303–315.

    CAS  Google Scholar 

  • Evans, M.M.S., and Kermicle, J.L. (2001b). Teosinte crossing barrier1., a locus governing hybridization of teosinte with maize . Theor. Appl. Genet. 103: 259–265.

    Article  CAS  Google Scholar 

  • Faure, J.E., Digonnet, C., and Dumas, C. (1994). An in vitro system for adhesion and fusion of maize gametes. Science.263: 1598–1600.

    Article  CAS  PubMed  Google Scholar 

  • Faure, J.E., Rusche, M.L., Thomas, A., Keim, P., Dumas, C., Mogensen, H.L., Rougier, M., and Chaboud, A. (2003). Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells . Plant J. 33: 1051–1062.

    Article  PubMed  Google Scholar 

  • Fowler, J.E. (2003). A gametophyte factor on chromosome 9 affects both male and female game-tophytes. Maize Genet. Coop. News Lett. 77: 26–27.

    Google Scholar 

  • Franken, P., Niesbach-Klosgen, U., Weydemann, U., Marechal-Drouard, L., Saedler, H., and Wienand, U. (1991). The duplicated chalcone synthase genes C2.and Whp.( white pollen.) of Zea mays.are independently regulated; evidence for translational control of Whp.expression by the anthocyanin intensifying gene in EMBO J. 10: 2605–2612.

    CAS  Google Scholar 

  • Gibbon, B., Kovar, D., and Staiger, C. (1999). Latrunculin B has different effects on pollen germination and tube growth . Plant Cell.11: 2349–2363.

    Article  CAS  PubMed  Google Scholar 

  • Greyson, R. (1994). The Development of Flowers (New York, USA: Oxford University Press).

    Google Scholar 

  • Greyson, R.I., Walden, D.B., and Cheng, P.C. (1980). LM, TEM and SEM observations of anther development in the genic male-sterile ( ms9.) mutant of corn Zea mays Can. J. Genet. Cytol. 22: 153–166.

    Google Scholar 

  • Hamilton, D.A., Roy, M., Rueda, J., Sindhu, R.K., Sanford, J., and Mascarenhas, J.P. (1992). Dissection of a pollen-specific promoter from maize by transient transformation assays . Plant Mol. Biol. 18: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann, M., Pinto, S., Kluth, J., Wienand, U., and Lorbiecke, R. (2006). The PTI1-like kinase ZmPti1a from maize ( Zea mays.L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte . BMC Plant Biol. 6: 22.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. (1966). Cytoplasmic continuities during spore formation in flowering plants. Endeavour.25: 65–72.

    Article  Google Scholar 

  • Heslop-Harrison, Y., Heslop-Harrison, J., and Reger, B.J. (1985). The pollen-stigma interaction in the grasses. VII: pollen-tube guidance and the regulation of tube number in Zea mays.L. Acta Bot. Neerl. 34: 193–211.

    Google Scholar 

  • Heuer, S., Lörz, H., and Dresselhaus, T. (2000). The MADS box gene ZmMADS2.is specifically expressed in maize pollen and during maize pollen tube growth . Sex Plant Reprod. 13: 21–27.

    Article  CAS  Google Scholar 

  • House, L.R., and Nelson, O.E. (1958). Tracer study of pollen-tube growth in cross-sterile maize. J. Hered. 49: 18–21.

    Google Scholar 

  • Keijzer, C.J., Leferink-ten Klooster, H.B., and Reinders, M.C. (1996). The mechanics of the grass flower: anther dehiscence and pollen shedding in maize . Ann. Bot. 78: 15–21.

    Article  Google Scholar 

  • Kermicle, J. (2006). A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives . Genetics.172: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Kiesselbach, T.A. (1949). The Structure and Reproduction of Corn. (Lincoln, Nebraska, USA: University of Nebraska Press).

    Google Scholar 

  • Kovar, D., Drøbak, B., and Staiger, C. (2000). Maize profilin isoforms are functionally distinct. Plant Cell.12: 583–598.

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky, A., Kozlovsky, S.V., Tian, G.W., Chen, M.H., Zaltsman, A., and Citovsky, V. (2007). How pollen tubes grow. Dev. Biol. 303: 405–420.

    Article  CAS  PubMed  Google Scholar 

  • Lalanne, E., and Twell, D. (2002). Genetic control of male germ unit organization in Arabidopsis. Plant Physiol. 129: 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Laughnan, J.R., and Gabay-Laughnan, S. (1994). The placement of genes using waxy.-marked reciprocal translocations. In The Maize Handbook, M. Freeling and V. Walbot, eds New York: (Springer-Verlag), pp. 255–257.

    Google Scholar 

  • Loukides, C.A., Broadwater, A.H., and Bedinger, P.A. (1995). Two new male-sterile mutants of Zea mays.(Poaceae) with abnormal tapetal cell morphology . Am. J. Bot. 82: 1017–1023.

    Article  Google Scholar 

  • Ma, J., Morrow, D., Fernandes, J., and Walbot, V. (2006). Comparative profiling of the sense and antisense transcriptome of maize lines . Genome Biol. 7: R22.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Duncan, D., Morrow, D.J., Fernandes, J., and Walbot, V. (2007). Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types . Plant J.50: 637–648.

    Article  CAS  PubMed  Google Scholar 

  • Márton, M.L., Cordts, S., Broadhvest, J., and Dresselhaus, T. (2005). Micropylar pollen tube guidance by egg apparatus 1 of maize . Science.307: 573–576.

    Article  PubMed  CAS  Google Scholar 

  • Mo, Y., Nagel, C., and Taylor, L.P. (1992). Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen . Proc. Natl. Acad. Sci. USA. 89: 7213–7217.

    Article  CAS  PubMed  Google Scholar 

  • Morton, C.M., Lawson, D.L., and Bedinger, P. (1989). Morphological study of the maize male sterile mutant ms7 Maydica.34: 239–245.

    Google Scholar 

  • Mulcahy, D.L., Sari-Gorla, M., and Mulcahy, G.B. (1996). Pollen selection: past, present and future. Sex Plant Reprod. 9: 353–356.

    Article  Google Scholar 

  • Nelson, O.E. (1952). Non-reciprocal cross-sterility in maize. Genetics.37: 101–124.

    CAS  PubMed  Google Scholar 

  • Nelson, O.E. (1994). The gametophyte factors of maize. In The Maize Handbook, M. Freeling and V. Walbot, eds (New York: Springer-Verlag), pp. 496–502.

    Google Scholar 

  • Ottaviano, E., Sari-Gorla, M., and Villa, M. (1988). Pollen competitive ability in maize: within population variability and response to selection . Theor. Appl. Genet. 76: 601–608.

    Article  Google Scholar 

  • Owen, H.A., and Makaroff, C.A. (1995). Ultrastructure of microsporogenesis and microgame-togenesis in Arabidopsis thaliana.(L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma.185: 7–21.

    Article  Google Scholar 

  • Pacini, E. (1997). Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Article  Google Scholar 

  • Pacini, E., Franchi, G.G., and Hesse, M. (1985). The tapetum: its form, function and possible phylogeny in Embryophyta . Pl. Syst. Evol. 149: 155–185.

    Article  Google Scholar 

  • Pelletier, G., and Budar, F. (2007). The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering . Curr. Opin. Biotech. 18: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Perdue, T.D., Loukides, C.A., and Bedinger, P.A. (1992). The formation of cytoplasmic channels between tapetal cells in Zea mays Protoplasma.171: 75–79.

    Article  Google Scholar 

  • Pina, C., Pinto, F., Feijo, J.A., and Becker, J.D. (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138: 744–756.

    Article  CAS  PubMed  Google Scholar 

  • Pollak, P., Hansen, K., Astwood, J., and Taylor, L. (1995). Conditional male fertility in maize . Sex Plant Reprod. 8: 231–241.

    Article  Google Scholar 

  • Pollak, P.E., Vogt, T., Mo, Y., and Taylor, L.P. (1993). Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida Plant Physiol. 102: 925–932.

    CAS  Google Scholar 

  • Procissi, A., Guyon, A., Pierson, E.S., Giritch, A., Knuiman, B., Grandjean, O., Tonelli, C., Derksen, J., Pelletier, G., and Bonhomme, S. (2003). KINKY POLLEN.encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes . Plant J. 36: 894–904.

    Article  CAS  PubMed  Google Scholar 

  • Ren, H., Gibbon, B., Ashworth, S., Sherman, D., Yuan, M., and Staiger, C. (1997). Actin purified from maize pollen functions in living plant cells . Plant Cell.9: 1445–1457.

    Article  CAS  PubMed  Google Scholar 

  • Roman, H. (1948). Directed fertilization in maize. Proc. Natl. Acad. Sci. USA.34: 36–42.

    Article  Google Scholar 

  • Rosi-Marshall, E.J., Tank, J.L., Royer, T.V., Whiles, M.R., Evans-White, M., Chambers, C., Griffiths, N.A., Pokelsek, J., and Stephen, M.L. (2007). Toxins in transgenic crop byproducts may affect headwater stream ecosystems . Proc. Natl. Acad. Sci. USA.104: 16204–16208.

    Article  CAS  PubMed  Google Scholar 

  • Rowley, J.R. (1973). Formation of pollen exine bacules and microchannels on a gly cocalyx. Grana.13: 129–138.

    Article  Google Scholar 

  • Rubinstein, A., Marquez, J., Suarez-Cervera, M., and Bedinger, P. (1995). Extensin-like glycopro-teins in the maize pollen tube wall . Plant Cell.7: 2211–2225.

    Article  CAS  PubMed  Google Scholar 

  • Sari-Gorla, M., Pé, M.E., Mulcahy, D.L., and Ottaviano, E. (1992). Genetic dissection of pollen competitive ability in maize . Heredity.69: 423–430.

    Google Scholar 

  • Sari-Gorla, M., Pé, M.E., and Rossini, L. (1994). Detection of QTLs controlling pollen germination and growth in maize . Heredity.72: 332–335.

    Article  Google Scholar 

  • Sari-Gorla, M., Binelli, G., Pé, M.E., and Villa, M. (1995). Detection of genetic factors controlling pollen-style interaction in maize . Heredity.74: 62–69.

    Article  Google Scholar 

  • Sari-Gorla, M., Ferrario, S., Villa, M., and Pé, M.E. (1996). gaMS-1.: a gametophytic male sterile mutant in maize . Sex Plant Reprod. 9: 216–220.

    Article  Google Scholar 

  • Sari-Gorla, M., Gatti, E., Villa, M., and Pé, M.E. (1997). A multi-nucleate male-sterile mutant of maize with gametophytic expression . Sex Plant Reprod. 10: 22–26.

    Article  Google Scholar 

  • Schnable, P.S., and Wise, R.P. (1998). The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175–180.

    Article  Google Scholar 

  • Schreiber, D., Bantin, J., and Dresselhaus, T. (2004). The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence . Plant Physiol. 134: 1069–1079.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, D.N., and Dresselhaus, T. (2003). In vitro pollen germination and transient transformation of Zea mays.and other plant species. Plant Mol. Biol. Rep..21: 31–41 (note erratum on 21: 319).

    Google Scholar 

  • Sheridan, W.F., Avalkina, N.A., Shamrov, II, Batygina, T.B., and Golubovskaya, I.N. (1996). The mac1.gene: controlling the commitment to the meiotic pathway in maize. Genetics.142: 1009–1020.

    CAS  PubMed  Google Scholar 

  • Sheridan, W.F., Golubeva, E.A., Abrhamova, L.I., and Golubovskaya, I.N. (1999). The mac1.mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics.153: 933–941.

    CAS  PubMed  Google Scholar 

  • Skvarla, J.J., and Larson, D.A. (1966). Fine structural studies of Zea mays pollen I. membranes and exine ontogeny. Am. J. Bot. 53: 1112–1125.

    Article  Google Scholar 

  • Staiger, C., Goodbody, K., Hussey, P., Valenta, R., Drøbak, B., and Lloyd, C. (1993). The profilin multigene family of maize: differential expression of three isoforms . Plant J. 4: 631–641.

    Article  CAS  PubMed  Google Scholar 

  • Steiglitz, H. (1977). Role of β-1,3 glucanase in postmeiotic microspore release. Dev. Biol. 57: 87–97.

    Article  Google Scholar 

  • Suen, D.F., and Huang, A.H. (2007). Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction . J. Biol. Chem. 282: 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Suen, D.F., Wu, S.S., Chang, H.C., Dhugga, K.S., and Huang, A.H. (2003). Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style . J. Biol. Chem. 278: 43672–43681.

    Article  CAS  PubMed  Google Scholar 

  • Swanson, R., Edlund, A.F., and Preuss, D. (2004). Species specificity in pollen-pistil interactions. Annu. Rev. Genet. 38: 793–818.

    Article  CAS  PubMed  Google Scholar 

  • Takayama, S., and Isogai, A. (2005). Self-incompatibility in plants. Annu. Rev. Plant Biol. 56: 467–489.

    Article  CAS  Google Scholar 

  • Unger, E., Cigan, A.M., Trimnell, M., Xu, R.J., Kendall, T., Roth, B., and Albertsen, M. (2002). A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45.maize. Transgenic Res. 11: 455–465.

    Article  CAS  PubMed  Google Scholar 

  • Valdivia, E., Wu, Y., Li, L., Cosgrove, D., and Stephenson, A. (2007). A group-1 grass pollen allergen influences the outcome of pollen competition in maize. PLoS ONE.2: e154.

    Article  PubMed  CAS  Google Scholar 

  • Watrud, L.S., Lee, E.H., Fairbrother, A., Burdick, C., Reichman, J.R., Bollman, M., Storm, M., King, G., and Van de Water, P.K. (2004). Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker . Proc. Natl. Acad. Sci. USA.101: 14533–14538.

    Article  CAS  PubMed  Google Scholar 

  • West, D.P., and Albertsen, M.C. (1985). Three new male-sterile genes. Maize Genet. Coop. News Lett. 59: 87.

    Google Scholar 

  • Wu, G., Gu, Y., Li, S., and Yang, Z. (2001). A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets . Plant Cell. 13: 2841–2856.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H.M., and Cheung, A.Y. (2000). Programmed cell death in plant reproduction. Plant Mol. Biol. 44: 267–281.

    Article  PubMed  Google Scholar 

  • Xu, Z., and Dooner, H. (2006). The maize aberrant pollen transmission 1.gene is a SABRE/KIP homolog required for pollen tube growth . Genetics.172: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kirstin Carroll, Thomas Dresselhaus and Nathan Snyder for providing unpublished images for this chapter. In addition, we thank Kirstin Carroll and Margit Foss for comments on the manuscript. Research in JEF's laboratory is supported by NSF grants IBN-0420226 and DBI-0701731, and by US EPA Cooperative Agreement #CR-83281201-0. Research in PAB's laboratory is supported by NSF grants IBN-0421097 and DBI-0605200.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bedinger, P.A., Fowler, J.E. (2009). The Maize Male Gametophyte. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_4

Download citation

Publish with us

Policies and ethics