Advertisement

The Maize Male Gametophyte

  • Patricia A. Bedinger
  • John E. Fowler

Abstract

The maize male gametophyte is a biologically complex component in seed production, and is of great interest for both practical and scientific reasons. In the anther of the stamen, a well-characterized series of developmental events produces the haploid pollen grain, which is released for pollination of the silk and subsequent fertilization of the embryo sac. Use of biochemical, cell biological, and genetic techniques has provided insight into the mechanisms underlying these developmental changes. Here, we provide a basic description of these events. We also highlight recent results that inform our understanding of male gametophytic development and function, as well as features of maize that make it an attractive alternative to other plant models for investigating the male gametophyte.

Keywords

Pollen Tube Sperm Cell Pollen Tube Growth Male Gametophyte Tapetal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Kirstin Carroll, Thomas Dresselhaus and Nathan Snyder for providing unpublished images for this chapter. In addition, we thank Kirstin Carroll and Margit Foss for comments on the manuscript. Research in JEF's laboratory is supported by NSF grants IBN-0420226 and DBI-0701731, and by US EPA Cooperative Agreement #CR-83281201-0. Research in PAB's laboratory is supported by NSF grants IBN-0421097 and DBI-0605200.

References

  1. Aeschbacher, R.A., Hauser, M.T., Feldmann, K.A., and Benfey, P.N. (1995). The SABRE.gene is required for normal cell expansion in Arabidopsis Genes Dev. 9: 330–340.Google Scholar
  2. Ahlers, F., Bubert, H., Steuernagel, S., and Wiermann, R. (2000). The nature of oxygen in sporo-pollenin from the pollen of Typha angustifolia.L. Z. Naturforsch. [C].55: 129–136.Google Scholar
  3. Albertsen, M.C., and Phillips, R.L. (1981). Developmental cytology of 13 genetic male sterile loci in maize. Can. J. Genet. Cytol. 23: 195–208.Google Scholar
  4. Arthur, K., Vejlupkova, Z., Meeley, R., and Fowler, J. (2003). Maize ROP2 GTPase provides a competitive advantage to the male gametophyte . Genetics.165: 2137–2151.PubMedGoogle Scholar
  5. Beadle, G.W. (1932). Genes in maize for pollen sterility. Genetics.17: 413–431.PubMedGoogle Scholar
  6. Bedinger, P., and Edgerton, M. (1990). Developmental staging of maize microspores reveals a transition in developing microspore proteins . Plant Physiol. 92: 474–479.PubMedCrossRefGoogle Scholar
  7. Bedinger, P., and Russell, S.D. (1994). Gametogenesis in maize. In The Maize Handbook, M Freeling and V. Walbot, eds New York: (Springer-Verlag), pp. 48–61.Google Scholar
  8. Bernasconi, G., Ashman, T.L., Birkhead, T.R., Bishop, J.D., Grossniklaus, U., Kubli, E., Marshall, D.L., Schmid, B., Skogsmyr, I., Snook, R.R., Taylor, D., Till-Bottraud, I., Ward, P.I., Zeh, D.W., and Hellriegel, B. (2004). Evolutionary ecology of the prezygotic stage. Science.303: 971–975.PubMedCrossRefGoogle Scholar
  9. Bih, F.Y., Wu, S.S., Ratnayake, C., Walling, L.L., Nothnagel, E.A., and Huang, A.H. (1999). The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tape-tum mRNA with a long 5′ leader. J. Biol. Chem. 274: 22884–22894.PubMedCrossRefGoogle Scholar
  10. Blackmore, S., Wortley, A.H., Skvarla, J.J., and Rowley, J.R. (2007). Pollen wall development in flowering plants. New Phytol. 174: 483–498.PubMedCrossRefGoogle Scholar
  11. Booy, G., Krens, F.A., and Bino, R.J. (1992). Analysis of pollen-tube growth in cultured maize silks. Sex Plant Reprod. 5: 227–231.CrossRefGoogle Scholar
  12. Brettschneider, R., Becker, D., and Lörz, H. (1997). Efficient transformation of scutellar tissue of immature maize embryos . Theor. Appl. Genet. 94: 737–748.CrossRefGoogle Scholar
  13. Carlson, W.R. (2007). Locating a site on the maize B chromosome that controls preferential fertilization. Genome.50: 578–587.PubMedCrossRefGoogle Scholar
  14. Chang, M.T., and Neuffer, M.G. (1989). Maize microsporogenesis. Genome.32: 232–244.Google Scholar
  15. Chaubal, R., Anderson, J.R., Trimnell, M.R., Fox, T.W., Albertsen, M.C., and Bedinger, P. (2003). The transformation of anthers in the msca1.mutant of maize . Planta.216: 778–788.PubMedGoogle Scholar
  16. Chaubal, R.C., Zanella, C., Trimnell, M.R., Fox, T.W., Albertsen, M.C., and Bedinger, P. (2000). Two male-sterile mutants of Zea mays.(Poaceae) with an extra cell division in the anther wall . Am. J. Bot. 87: 1193–1201.PubMedCrossRefGoogle Scholar
  17. Cheng, P.C., Greyson, R.I., and Walden, D.B. (1979). Comparison of anther development in genic male-sterile ( ms10.) and in male-fertile corn ( Zea mays.) from light microscopy and scanning electron microscopy. Can. J. Bot. 57: 578–596.CrossRefGoogle Scholar
  18. Cigan, A.M., Unger, E., Xu, R.J., Kendall, T., and Fox, T.W. (2001). Phenotypic complementation of ms45.maize requires tapetal expression of MS45 . Sex Plant Reprod. 14: 135–142.CrossRefGoogle Scholar
  19. Cigan, A.M., Unger-Wallace, E., and Haug-Collet, K. (2005). Transcriptional gene silencing as a tool for uncovering gene function in maize . Plant J. 43: 929–940.PubMedCrossRefGoogle Scholar
  20. Clokey, I.W., and Anderson, E.G. (1938). Ms20 Maize Genet. Coop. News Lett. 12: 6.Google Scholar
  21. Cole, R.A., and Fowler, J.E. (2006). Polarized growth: maintaining focus on the tip. Curr. Opin. Plant Biol. 9: 579–588.PubMedCrossRefGoogle Scholar
  22. Cosgrove, D., Bedinger, P., and Durachko, D. (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA.94: 6559–6564.PubMedCrossRefGoogle Scholar
  23. D'Amato, F. (1984). Role of polyploidy in reproductive organs and tissues. In Embryology of Angiosperms, B.M. Johri, ed. (Berlin, Germany: Springer-Verlag), pp. 519–566.Google Scholar
  24. Datta, R., Chamusco, K.C., and Chourey, P.S. (2002). Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize . Plant Physiol. 130: 1645–1656.PubMedCrossRefGoogle Scholar
  25. Davis, G. (1966). Systematic Embryology of the Angiosperms. (New York: John Wiley and Sons).Google Scholar
  26. Dominguez, E., Mercado, J.A., Quesada, M.A., and Heredia, A. (1999). Pollen sporopollenin: degradation and structural elucidation . Sex Plant Reprod. 12: 171–178.CrossRefGoogle Scholar
  27. El-Ghazaly, G., and Jensen, W.A. (1985). Studies of the development of wheat ( Triticum aesti-vum.) pollen. III. Formation of microchannels in the exine. Pollen et Spores.27: 5–14.Google Scholar
  28. El-Ghazaly, G., and Jensen, W.J. (1986). Studies of the development of wheat ( Triticum aestivum.) pollen: I. Formation of the pollen wall and Ubisch bodies. Grana.25: 1–29.Google Scholar
  29. El-Ghazaly, G., and Jensen, W.A. (1987). Development of wheat ( Triticum aestivum.) pollen. II. Histochemical differentiation of wall and Ubisch bodies during development. Am. J. Bot. 74: 1396–1418.CrossRefGoogle Scholar
  30. Engel, M., Holmes-Davis, R., and McCormick, S. (2005). Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol. 138: 2124–2133.PubMedCrossRefGoogle Scholar
  31. Engel, M.L., Chaboud, A., Dumas, C., and McCormick, S. (2003). Sperm cells of Zea mays have a complex complement of mRNAs . Plant J. 34: 697–707.PubMedCrossRefGoogle Scholar
  32. Evans, M.M.S., and Kermicle, J. (2001a). Interaction between maternal effect and zygotic effect mutations during maize seed development . Genetics.159: 303–315.Google Scholar
  33. Evans, M.M.S., and Kermicle, J.L. (2001b). Teosinte crossing barrier1., a locus governing hybridization of teosinte with maize . Theor. Appl. Genet. 103: 259–265.CrossRefGoogle Scholar
  34. Faure, J.E., Digonnet, C., and Dumas, C. (1994). An in vitro system for adhesion and fusion of maize gametes. Science.263: 1598–1600.PubMedCrossRefGoogle Scholar
  35. Faure, J.E., Rusche, M.L., Thomas, A., Keim, P., Dumas, C., Mogensen, H.L., Rougier, M., and Chaboud, A. (2003). Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells . Plant J. 33: 1051–1062.PubMedCrossRefGoogle Scholar
  36. Fowler, J.E. (2003). A gametophyte factor on chromosome 9 affects both male and female game-tophytes. Maize Genet. Coop. News Lett. 77: 26–27.Google Scholar
  37. Franken, P., Niesbach-Klosgen, U., Weydemann, U., Marechal-Drouard, L., Saedler, H., and Wienand, U. (1991). The duplicated chalcone synthase genes C2.and Whp.( white pollen.) of Zea mays.are independently regulated; evidence for translational control of Whp.expression by the anthocyanin intensifying gene in EMBO J. 10: 2605–2612.Google Scholar
  38. Gibbon, B., Kovar, D., and Staiger, C. (1999). Latrunculin B has different effects on pollen germination and tube growth . Plant Cell.11: 2349–2363.PubMedCrossRefGoogle Scholar
  39. Greyson, R. (1994). The Development of Flowers (New York, USA: Oxford University Press).Google Scholar
  40. Greyson, R.I., Walden, D.B., and Cheng, P.C. (1980). LM, TEM and SEM observations of anther development in the genic male-sterile ( ms9.) mutant of corn Zea mays Can. J. Genet. Cytol. 22: 153–166.Google Scholar
  41. Hamilton, D.A., Roy, M., Rueda, J., Sindhu, R.K., Sanford, J., and Mascarenhas, J.P. (1992). Dissection of a pollen-specific promoter from maize by transient transformation assays . Plant Mol. Biol. 18: 211–218.PubMedCrossRefGoogle Scholar
  42. Herrmann, M., Pinto, S., Kluth, J., Wienand, U., and Lorbiecke, R. (2006). The PTI1-like kinase ZmPti1a from maize ( Zea mays.L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte . BMC Plant Biol. 6: 22.PubMedCrossRefGoogle Scholar
  43. Heslop-Harrison, J. (1966). Cytoplasmic continuities during spore formation in flowering plants. Endeavour.25: 65–72.CrossRefGoogle Scholar
  44. Heslop-Harrison, Y., Heslop-Harrison, J., and Reger, B.J. (1985). The pollen-stigma interaction in the grasses. VII: pollen-tube guidance and the regulation of tube number in Zea mays.L. Acta Bot. Neerl. 34: 193–211.Google Scholar
  45. Heuer, S., Lörz, H., and Dresselhaus, T. (2000). The MADS box gene ZmMADS2.is specifically expressed in maize pollen and during maize pollen tube growth . Sex Plant Reprod. 13: 21–27.CrossRefGoogle Scholar
  46. House, L.R., and Nelson, O.E. (1958). Tracer study of pollen-tube growth in cross-sterile maize. J. Hered. 49: 18–21.Google Scholar
  47. Keijzer, C.J., Leferink-ten Klooster, H.B., and Reinders, M.C. (1996). The mechanics of the grass flower: anther dehiscence and pollen shedding in maize . Ann. Bot. 78: 15–21.CrossRefGoogle Scholar
  48. Kermicle, J. (2006). A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives . Genetics.172: 499–506.PubMedCrossRefGoogle Scholar
  49. Kiesselbach, T.A. (1949). The Structure and Reproduction of Corn. (Lincoln, Nebraska, USA: University of Nebraska Press).Google Scholar
  50. Kovar, D., Drøbak, B., and Staiger, C. (2000). Maize profilin isoforms are functionally distinct. Plant Cell.12: 583–598.PubMedCrossRefGoogle Scholar
  51. Krichevsky, A., Kozlovsky, S.V., Tian, G.W., Chen, M.H., Zaltsman, A., and Citovsky, V. (2007). How pollen tubes grow. Dev. Biol. 303: 405–420.PubMedCrossRefGoogle Scholar
  52. Lalanne, E., and Twell, D. (2002). Genetic control of male germ unit organization in Arabidopsis. Plant Physiol. 129: 865–875.PubMedCrossRefGoogle Scholar
  53. Laughnan, J.R., and Gabay-Laughnan, S. (1994). The placement of genes using waxy.-marked reciprocal translocations. In The Maize Handbook, M. Freeling and V. Walbot, eds New York: (Springer-Verlag), pp. 255–257.Google Scholar
  54. Loukides, C.A., Broadwater, A.H., and Bedinger, P.A. (1995). Two new male-sterile mutants of Zea mays.(Poaceae) with abnormal tapetal cell morphology . Am. J. Bot. 82: 1017–1023.CrossRefGoogle Scholar
  55. Ma, J., Morrow, D., Fernandes, J., and Walbot, V. (2006). Comparative profiling of the sense and antisense transcriptome of maize lines . Genome Biol. 7: R22.PubMedCrossRefGoogle Scholar
  56. Ma, J., Duncan, D., Morrow, D.J., Fernandes, J., and Walbot, V. (2007). Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types . Plant J.50: 637–648.PubMedCrossRefGoogle Scholar
  57. Márton, M.L., Cordts, S., Broadhvest, J., and Dresselhaus, T. (2005). Micropylar pollen tube guidance by egg apparatus 1 of maize . Science.307: 573–576.PubMedCrossRefGoogle Scholar
  58. Mo, Y., Nagel, C., and Taylor, L.P. (1992). Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen . Proc. Natl. Acad. Sci. USA. 89: 7213–7217.PubMedCrossRefGoogle Scholar
  59. Morton, C.M., Lawson, D.L., and Bedinger, P. (1989). Morphological study of the maize male sterile mutant ms7 Maydica.34: 239–245.Google Scholar
  60. Mulcahy, D.L., Sari-Gorla, M., and Mulcahy, G.B. (1996). Pollen selection: past, present and future. Sex Plant Reprod. 9: 353–356.CrossRefGoogle Scholar
  61. Nelson, O.E. (1952). Non-reciprocal cross-sterility in maize. Genetics.37: 101–124.PubMedGoogle Scholar
  62. Nelson, O.E. (1994). The gametophyte factors of maize. In The Maize Handbook, M. Freeling and V. Walbot, eds (New York: Springer-Verlag), pp. 496–502.Google Scholar
  63. Ottaviano, E., Sari-Gorla, M., and Villa, M. (1988). Pollen competitive ability in maize: within population variability and response to selection . Theor. Appl. Genet. 76: 601–608.CrossRefGoogle Scholar
  64. Owen, H.A., and Makaroff, C.A. (1995). Ultrastructure of microsporogenesis and microgame-togenesis in Arabidopsis thaliana.(L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma.185: 7–21.CrossRefGoogle Scholar
  65. Pacini, E. (1997). Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.CrossRefGoogle Scholar
  66. Pacini, E., Franchi, G.G., and Hesse, M. (1985). The tapetum: its form, function and possible phylogeny in Embryophyta . Pl. Syst. Evol. 149: 155–185.CrossRefGoogle Scholar
  67. Pelletier, G., and Budar, F. (2007). The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering . Curr. Opin. Biotech. 18: 121–125.PubMedCrossRefGoogle Scholar
  68. Perdue, T.D., Loukides, C.A., and Bedinger, P.A. (1992). The formation of cytoplasmic channels between tapetal cells in Zea mays Protoplasma.171: 75–79.CrossRefGoogle Scholar
  69. Pina, C., Pinto, F., Feijo, J.A., and Becker, J.D. (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138: 744–756.PubMedCrossRefGoogle Scholar
  70. Pollak, P., Hansen, K., Astwood, J., and Taylor, L. (1995). Conditional male fertility in maize . Sex Plant Reprod. 8: 231–241.CrossRefGoogle Scholar
  71. Pollak, P.E., Vogt, T., Mo, Y., and Taylor, L.P. (1993). Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida Plant Physiol. 102: 925–932.Google Scholar
  72. Procissi, A., Guyon, A., Pierson, E.S., Giritch, A., Knuiman, B., Grandjean, O., Tonelli, C., Derksen, J., Pelletier, G., and Bonhomme, S. (2003). KINKY POLLEN.encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes . Plant J. 36: 894–904.PubMedCrossRefGoogle Scholar
  73. Ren, H., Gibbon, B., Ashworth, S., Sherman, D., Yuan, M., and Staiger, C. (1997). Actin purified from maize pollen functions in living plant cells . Plant Cell.9: 1445–1457.PubMedCrossRefGoogle Scholar
  74. Roman, H. (1948). Directed fertilization in maize. Proc. Natl. Acad. Sci. USA.34: 36–42.CrossRefGoogle Scholar
  75. Rosi-Marshall, E.J., Tank, J.L., Royer, T.V., Whiles, M.R., Evans-White, M., Chambers, C., Griffiths, N.A., Pokelsek, J., and Stephen, M.L. (2007). Toxins in transgenic crop byproducts may affect headwater stream ecosystems . Proc. Natl. Acad. Sci. USA.104: 16204–16208.PubMedCrossRefGoogle Scholar
  76. Rowley, J.R. (1973). Formation of pollen exine bacules and microchannels on a gly cocalyx. Grana.13: 129–138.CrossRefGoogle Scholar
  77. Rubinstein, A., Marquez, J., Suarez-Cervera, M., and Bedinger, P. (1995). Extensin-like glycopro-teins in the maize pollen tube wall . Plant Cell.7: 2211–2225.PubMedCrossRefGoogle Scholar
  78. Sari-Gorla, M., Pé, M.E., Mulcahy, D.L., and Ottaviano, E. (1992). Genetic dissection of pollen competitive ability in maize . Heredity.69: 423–430.Google Scholar
  79. Sari-Gorla, M., Pé, M.E., and Rossini, L. (1994). Detection of QTLs controlling pollen germination and growth in maize . Heredity.72: 332–335.CrossRefGoogle Scholar
  80. Sari-Gorla, M., Binelli, G., Pé, M.E., and Villa, M. (1995). Detection of genetic factors controlling pollen-style interaction in maize . Heredity.74: 62–69.CrossRefGoogle Scholar
  81. Sari-Gorla, M., Ferrario, S., Villa, M., and Pé, M.E. (1996). gaMS-1.: a gametophytic male sterile mutant in maize . Sex Plant Reprod. 9: 216–220.CrossRefGoogle Scholar
  82. Sari-Gorla, M., Gatti, E., Villa, M., and Pé, M.E. (1997). A multi-nucleate male-sterile mutant of maize with gametophytic expression . Sex Plant Reprod. 10: 22–26.CrossRefGoogle Scholar
  83. Schnable, P.S., and Wise, R.P. (1998). The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175–180.CrossRefGoogle Scholar
  84. Schreiber, D., Bantin, J., and Dresselhaus, T. (2004). The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence . Plant Physiol. 134: 1069–1079.PubMedCrossRefGoogle Scholar
  85. Schreiber, D.N., and Dresselhaus, T. (2003). In vitro pollen germination and transient transformation of Zea mays.and other plant species. Plant Mol. Biol. Rep..21: 31–41 (note erratum on 21: 319).Google Scholar
  86. Sheridan, W.F., Avalkina, N.A., Shamrov, II, Batygina, T.B., and Golubovskaya, I.N. (1996). The mac1.gene: controlling the commitment to the meiotic pathway in maize. Genetics.142: 1009–1020.PubMedGoogle Scholar
  87. Sheridan, W.F., Golubeva, E.A., Abrhamova, L.I., and Golubovskaya, I.N. (1999). The mac1.mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics.153: 933–941.PubMedGoogle Scholar
  88. Skvarla, J.J., and Larson, D.A. (1966). Fine structural studies of Zea mays pollen I. membranes and exine ontogeny. Am. J. Bot. 53: 1112–1125.CrossRefGoogle Scholar
  89. Staiger, C., Goodbody, K., Hussey, P., Valenta, R., Drøbak, B., and Lloyd, C. (1993). The profilin multigene family of maize: differential expression of three isoforms . Plant J. 4: 631–641.PubMedCrossRefGoogle Scholar
  90. Steiglitz, H. (1977). Role of β-1,3 glucanase in postmeiotic microspore release. Dev. Biol. 57: 87–97.CrossRefGoogle Scholar
  91. Suen, D.F., and Huang, A.H. (2007). Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction . J. Biol. Chem. 282: 625–636.PubMedCrossRefGoogle Scholar
  92. Suen, D.F., Wu, S.S., Chang, H.C., Dhugga, K.S., and Huang, A.H. (2003). Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style . J. Biol. Chem. 278: 43672–43681.PubMedCrossRefGoogle Scholar
  93. Swanson, R., Edlund, A.F., and Preuss, D. (2004). Species specificity in pollen-pistil interactions. Annu. Rev. Genet. 38: 793–818.PubMedCrossRefGoogle Scholar
  94. Takayama, S., and Isogai, A. (2005). Self-incompatibility in plants. Annu. Rev. Plant Biol. 56: 467–489.CrossRefGoogle Scholar
  95. Unger, E., Cigan, A.M., Trimnell, M., Xu, R.J., Kendall, T., Roth, B., and Albertsen, M. (2002). A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45.maize. Transgenic Res. 11: 455–465.PubMedCrossRefGoogle Scholar
  96. Valdivia, E., Wu, Y., Li, L., Cosgrove, D., and Stephenson, A. (2007). A group-1 grass pollen allergen influences the outcome of pollen competition in maize. PLoS ONE.2: e154.PubMedCrossRefGoogle Scholar
  97. Watrud, L.S., Lee, E.H., Fairbrother, A., Burdick, C., Reichman, J.R., Bollman, M., Storm, M., King, G., and Van de Water, P.K. (2004). Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker . Proc. Natl. Acad. Sci. USA.101: 14533–14538.PubMedCrossRefGoogle Scholar
  98. West, D.P., and Albertsen, M.C. (1985). Three new male-sterile genes. Maize Genet. Coop. News Lett. 59: 87.Google Scholar
  99. Wu, G., Gu, Y., Li, S., and Yang, Z. (2001). A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets . Plant Cell. 13: 2841–2856.PubMedCrossRefGoogle Scholar
  100. Wu, H.M., and Cheung, A.Y. (2000). Programmed cell death in plant reproduction. Plant Mol. Biol. 44: 267–281.PubMedCrossRefGoogle Scholar
  101. Xu, Z., and Dooner, H. (2006). The maize aberrant pollen transmission 1.gene is a SABRE/KIP homolog required for pollen tube growth . Genetics.172: 1251–1261.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patricia A. Bedinger
  • John E. Fowler

There are no affiliations available

Personalised recommendations