The Mexican Landraces: Description, Classification and Diversity

  • Jean-Philippe Vielle-Calzada
  • Jaime Padilla


The domestication of maize gave rise to a group of ancestral landraces that eventually diversified and adapted to a wide range of climatic and geographic conditions. Although biologists do not always agree in the total number of landraces currently existing in Mexico, there are at least 59 that can be clearly and consistently distinguished on the basis of biochemical and morphological characteristics. Following a historical perspective, this chapter reviews our current knowledge of the phenotypic and geographical distinctions among Mexican landraces, and illustrates their most recent classification. It also discusses some of the opportunities that the genomic characterization of landrace germplasm could offer for the study of maize functional diversity and molecular evolution.


Maize Diversity Maize Inbred Line North American Free Trade Agreement Maize Germplasm Maize Landrace 



We are particularly grateful to Juan Manuel Hernández Casillas (INIFAP), Jesús Sánchez González (CUCBA, Universidad de Guadalajara), Rafael Ortega Paczka (Universidad Autónoma de Chapingo), and Jaime Molina Galán (Colegio de Postgraduados, and Bruce Benz (Texas Wesleyan University)) for providing photographic access to landrace collections and helping with reference information. Mireya Hernández Ortiz and María del Carmen Ruíz provided help with the bibliography. Research in our laboratory is supported by Consejo Nacional de Ciencia y Tecnología (CONACyT), Consejo Estatal de Ciencia y Tecnología de Guanajuato (CONCyTEG), the Ministry of Agriculture (SAGARPA), and the Howard Hughes Medical Institute.


  1. Anderson E. 1946. Maizes in Mexico. A preliminary survey. Ann. Mo. Bot. Gard. 33: 147–247.CrossRefGoogle Scholar
  2. Anderson E. and Cutler H.C. 1942. Races of Zea mays. I. Their recognition and classification. Ann. Bot. Gard. 29: 69–88.CrossRefGoogle Scholar
  3. Bellón M.R. and Berthaud J. 2004. Transgenic maize and the evolution of landrace diversity in Mexico. The importance of farmers' behavior . Plant Physiol. 134: 883–888.CrossRefPubMedGoogle Scholar
  4. Bellón M.R., Berthaud J., Smalle M., Aguirre J.A., Taba S., Aragón F., Díaz J. and Castro H. 2003 . Participatory landrace selection for on-farm conservation: An example from central valleys of Oaxaca, Mexico . Genet. Resour. Crop Evol. 50: 401–416.CrossRefGoogle Scholar
  5. Benz B.F. 1986. Taxonomy and Evolution of Mexican Maize . PhD dissertation. University of Wisconsin, 433 p.Google Scholar
  6. Bonfil B.G. 1982. Nuestro maíz, treinta monografías populares. In: Hope M.E. and Pereyra L. Eds. Museo Nacional de Culturas Populares . Consejo Nacional de Fomento Educativo.México, D F, 326 p.Google Scholar
  7. Buckler E.S. and Gore M. 2007. An Arabidopsis haplotype map takes root. Nat. Genet. 39 : 1056–1057.CrossRefPubMedGoogle Scholar
  8. Buckler E.S., Gaut B.S. and McMullen M.D. 2006. Molecular and functional diversity of maize. Curr. Opin. Plant Biol. 9: 1–5.CrossRefGoogle Scholar
  9. Cervantes S.T., Goodman M.M., Casas D.E. and Rawlings J.O. 1978. Use of genetic effects and genotyope by environmental interactions for the classification of Mexican races of maize . Genetics 90: 339–348.PubMedGoogle Scholar
  10. Chá vez E. 1913. Cultivo del Maíz. Imprenta y Fototipia de la Secretaria de Fomento . México, 56 p.Google Scholar
  11. Doebley J. 2004. The genetics of maize evolution. Annu. Rev. Genet. 38: 37–59.CrossRefPubMedGoogle Scholar
  12. Doebley J.F., Goodman M.M. and Stuber C.W. 1985. Isozyme variation in races of maize from México. Am. J. Bot. 72(5): 629–639.CrossRefGoogle Scholar
  13. Fu H. and Dooner H.K. 2002. Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99: 9573–9578.PubMedGoogle Scholar
  14. Goodman M.M. 1972. Distance analysis in biology. Syst. Zool. 21: 174–186.CrossRefGoogle Scholar
  15. Goodman M.M. and Bird R.M. 1977. The races of maize IV: Tentative grouping of 219 Latin American races. Econ. Bot. 31(2): 204–221.CrossRefGoogle Scholar
  16. Gutiérrez N.M.L., Warren C.A., León P. and Walbot V. 1998. Transcriptionally active MuDR, the regulatory element of the mutator transposable element family of Zea mays , is present in some accessions of the Mexican landrace Zapalote chico . Genetics 149: 329–346.Google Scholar
  17. Herná ndez X.E. 1985. La agricultura en la Península de Yucatá n. In: Xolocotzia: Obras de Efrain Herná ndez Xolocotzi. Tomo 1. Revista de Geografía Agríola. Universidad Autónoma Chapingo.Chapingo, México.Google Scholar
  18. Herná ndez X.E. and Alanís F. 1970. Estudio morfológico de cinco razas de maiz de la Sierra Madre Occidental de México: implicaciones filogenéticas y fitogeográ ficas . Agrociencia 5(1): 3–30.Google Scholar
  19. Jaenicke-Depres V., Buckler E.S., Smith B.D., Gilbert M.T.P., Cooper A., Doebley J. and Pääbo S. 2003. Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208.CrossRefGoogle Scholar
  20. Kato Y.T.A. 1976. Chromosome Morphology and the Origin of Maize and Its Races . Centro de Genética, Colegio de Postgraduados Chapingo. México, 56230 .Google Scholar
  21. Kato Y.T.A. 1984. Chromosome morphology and the origin of maize and races. Evol. Biol. 1 7 : 219–253.Google Scholar
  22. Kuslehov N.N. 1930. Maíces de México, Guatemala, Cuba, Panamá y Colombia (según las colec-ciones de N. S. Bukasov). In: Las plantas cultivadas de México, Guatemala y Colombia. Traducción al español por Jorge León (pp. 40–53), 1981. CATIE, 173 p.Google Scholar
  23. Lai J., Li Y., Messing J. and Dooner H.K. 2005. Gene movement by helitron tranposons contributes to the haplotype variability of maize . Proc. Natl. Acad. Sci. USA 102: 9068–9073.CrossRefPubMedGoogle Scholar
  24. Matsuoka Y. 2005. Origin matters: Lessons from the search for the wild ancestor of maize. Breed. Sci. 55: 383–390.CrossRefGoogle Scholar
  25. Matzuoka Y., Vigouroux Y., Goodman M., Sanchez J., Buckler E. and Doebley J.F. 2002. A single domestication for maize shown by multilocus microsatellite genotyping . Proc. Natl. Acad. Sci.USA 99: 6080–6084.CrossRefGoogle Scholar
  26. McClintock B., Kato Y.T.A. and Blumenshein A.Z. 1981. Constitución cromosómica de las razas de maiz. Su significado en la interpretación de relaciones entre las razas y variedades en las Américas . Colegio de Postgraduados. Chapingo, México, 521 p.Google Scholar
  27. Morgante M., Brunner S., Pea G., Fengler K., Zuccolo A. and Rafalski A. 2005. Gene duplication and exon shuffling by helitron -like transposons generate intraspecies diversity in maize . Nat.Genet. 37: 997–1002.CrossRefPubMedGoogle Scholar
  28. Ortega Paczka R. 1979. Reestudio de las razas mexicanas de maíz. Informe anual. Campo agr. Exp. Mesa Central. INIA. Chapingo, México.Google Scholar
  29. Ortega Paczka R. 1985. Variedades y razas mexicanas de maíz y su evaluación en cruzamientos con lineas de climas templado como material de partida para fitomejoramiento. Abbreviated Spanish Translation of PhD thesis. N. I. Vavilov National Institute of Plants. Leningrad, USSR,22 p.Google Scholar
  30. Ortega Paczka R. 2003. La diversidad del Maíz en México. In Sin Maíz no hay país. In:Esteva G. and Marielle C. Eds. CONACULTA, México DF.Google Scholar
  31. Ortega Paczka R., Sá nchez J.J., Castillo Gonzá lez J.M. and Herná ndez Casillas J.M. 1991. Estado actual de lose studios sobre maíces nativos de México. In Avances en el estudio de los recursos fitogenéticos de México. In: Ortega R., Palomino G., Castillo V.A., Gonzá lez H. and Livera M. Eds. Sociedad Mexicana de Fitogenética , pp. 75ȓ84.Google Scholar
  32. Plucknett D.L., Williams J.T., Smith N.J.H. and Anishetty N.M. 1992. Bancos Genéticos: Un recurso mundial . Instituto Interamericano de Cooperación para la Agricultura y Centro Internacional de Agricultura Tropical.Google Scholar
  33. Pressoir G. and Berthaud J. 2004a. Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico . Heredity 92: 84ȓ94.Google Scholar
  34. Pressoir G. and Berthaud J. 2004b. Population structure and strong divergent selection shape phenotypic diversification in maize landraces . Heredity 92: 95–101.CrossRefGoogle Scholar
  35. Remington D.L., Thornsberry J.M., Matsuoka Y., Wilson L.M., Whitt S.R., Doebley J., Kresovich S., Goodman M.M. and Buckler E.S. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome . Proc. Natl. Acad. Sci. USA 98: 11479–11484.CrossRefPubMedGoogle Scholar
  36. Ron-Parra J., Sá nchez J.J., Jiménez C.A., Carrera J.A., Martín J.G., Morales R.M., de la Cruz L.L., Hurtado P.S., Mena M.S. and Rodríguez J.G. 2006. Maíces nativos del Occidente de México I. Colectas 2004 . Scientiav 8(1): 1–139.Google Scholar
  37. Sánchez J.J. 1989. Relationships among the Mexican races of maize. PhD dissertation. North Carolina State University. Raleigh, NC.Google Scholar
  38. Sánchez J.J. and Goodman M.M. 1992. Relationships among the Mexican races of maize. Econ.Bot. 46(1): 72–85.CrossRefGoogle Scholar
  39. Sá nchez J.J., Goodman M.M. and Stuber C.W. 2000. Isozymatic and morphological diversity in the races of maize of México . Econ. Bot. 54(1): 43–59.CrossRefGoogle Scholar
  40. Tenaillon M.I., Sawkins M.C., Long A.D., Gaut R.L., Doebley J.F. and Gaut B.S. 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize ( Zea mays L. ssp. Mays). Proc. Nat. Acad. Sci. USA 98: 9161–9166.CrossRefPubMedGoogle Scholar
  41. Vavilov N.I. 1931. México and Central America as the principal centre of origin of cultivated plants of the new world . Bull. Appl. Bot. Genet. Plant Breed. 16: 1–248.Google Scholar
  42. Walden B.D. 1979. Maize Breeding and Genetics. Chichester: John Wiley & Sons.Google Scholar
  43. Wellhausen E.J., Roberts L.M., Hernández-Xoconostle E. and Mangelsdorf P.C. 1951. Razas de Maíz en México. Su origen, características y distribución . OEESAG. Folleto Técnico Número 55.Google Scholar
  44. Wright S.I., Vroh B.I., Schroeder S.G., Yamasaki M., Doebley J.F., McMullen M.D. and Gaut B.S. 2005. The effects of artificial selection on the maize genome. Science 308: 1310–1314.CrossRefPubMedGoogle Scholar
  45. Yamasaki M., Tenaillon M.I., Vroh-Bi I., Schroeder S.G., Sá nchez-Villeda H., Doebley J.F., Gaut B.S. and McMullen M.D. 2005. A large-scale for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement . Plant Cell 17: 2859–2872.CrossRefPubMedGoogle Scholar
  46. Yamasaki M., Wright S.I. and McMullen M.D. 2007. Gemomic screening for artificial selection during domestication and improvement in maize. Ann. Bot. August 18, Epub ahead of print.Google Scholar
  47. Yu J. and Buckler E.S. 2006. Genetic association mapping and genome organization of maize. Curr. Opin. Plant Biol. 17: 155–160.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jean-Philippe Vielle-Calzada
  • Jaime Padilla

There are no affiliations available

Personalised recommendations