Phytic Acid Active Phytases Seed Total Inositol Pyrophosphate Hybrid Pair 


  1. Bentsink, L., K. Yuan, M. Koornneef and D. Vreugdenhil (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana , using natural variation . Theor. Appl. Genet . 106: 1234–1243.PubMedGoogle Scholar
  2. Bowen, D.E., E.J. Souza, M.J. Guttieri, J. Fu and V. Raboy (2007) A low phytic acid barley mutation alters seed gene expression . Crop Sci. 47(S2): 149–159.CrossRefGoogle Scholar
  3. Bregitzer, P. and V. Raboy (2006) Agronomic effects of four independent low phytate mutations in barley: comparisons of wildtype and low-phytate sib lines . Crop Sci. 46: 1318–1322.CrossRefGoogle Scholar
  4. Brinch-Pedersen, H., L.D. S Ø rensen and P.B. Holm (2002) Engineering crop plants: getting a handle on phosphate . Trends Plant Sci . 7: 118–125.CrossRefPubMedGoogle Scholar
  5. Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11–26.CrossRefPubMedGoogle Scholar
  6. Chen, R., G. Xue, P. Chen, B. Yao, W. Yang, Q. Ma, Y. Fan, Z. Zhao, M.C. Tarczynski and J. Shi (2007) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res. 17: 633–643.CrossRefPubMedGoogle Scholar
  7. Drakakaki, G., S. Marcel, R.P. Glahn, E.K. Lund, S. Pariagh, R. Fischer, P. Christou and E. Stoger (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron . Plant Mol. Bio . 59: 869–880.CrossRefGoogle Scholar
  8. Environmental Protection Agency (2002) Concentrated animal feeding operations ruling, (accessed October 9, 2007).
  9. Ertl, D.S., K.A. Young and V. Raboy (1998) Plant genetic approaches to phosphorus management in agricultural production . J. Environ. Qual . 27: 299–304.CrossRefGoogle Scholar
  10. Gao , Y. , C. Shang , M.A. Saghai Maroof , R.M. Biyashev , E.A. Grabau , P. Kwanyuen , J.W. Burton and G.R. Buss (2007) A modified colorimetric method for phytic acid analysis in soybean. Crop Sci.47: 1797–1803.CrossRefGoogle Scholar
  11. Goodman, C.D., P. Casati and V. Walbot (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16: 1812–1826.CrossRefPubMedGoogle Scholar
  12. Hambidge, K.M., J.W. Huffer, V. Raboy, G.K. Grunwald, J.L. Westcott, L. Sian, L.V. Miller, J.A. Dorsch and N.F. Krebs (2004) Zinc absorption from low-phytate hybrids of maize and their wild-type hybrids. Amer. J. Clin. Nutr . 79: 1053–1059.PubMedGoogle Scholar
  13. Hambidge, K.M., N.F. Krebs, J.L. Westcott, L. Sian, L.V. Miller, K.L. Peterson and V. Raboy (2005) Absorption of calcium from tortilla meals prepared from low-phytate maize . Amer. J. Clin. Nutr . 82: 84–87.PubMedGoogle Scholar
  14. Jiang, L., T.E. Phillips, C.A. Hamm, Y.M. Drozdowicz, P.A. Rea, M. Maeshima, S.W. Rogers, and J.C. Rogers (2001) The protein storage vacuole: a unique compound organelle. J. Cell Biol 155: 991–1002.CrossRefPubMedGoogle Scholar
  15. Klein, M., B. Burla and E. Martinoia (2006) The multidrug resistance-associated protein (MRP/ ABCC) subfamily of ATP-binding cassette transporters in plants . FEBS Lett. 580: 1112–1122.CrossRefPubMedGoogle Scholar
  16. Larson, S.R. and V. Raboy (1999) Linkage mapping of maize and barley myo-Inositol 1-phosphate synthase DNA sequences: correspondence with a low phytic acid mutation. Theor. Appl. Genet . 99: 27–36.CrossRefGoogle Scholar
  17. Lorenz, A.J., M.P. Scott and K.R. Lamkey (2007) Quantitative determination of phytate and inorganic phosphorus for maize breeding . Crop Sci. 47: 600–604.CrossRefGoogle Scholar
  18. Lott, J.N.A., I. Ockenden, V. Raboy and G.D. Batten (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate . Seed Sci. Res . 10: 11–33.Google Scholar
  19. Maguire, R.O., D.A. Crouse and S.C. Hodges (2007) Diet modification to reduce phosphorus surpluses: a mass balance approach . J. Environ. Qual . 36: 1235–1240.CrossRefPubMedGoogle Scholar
  20. Martin, A.C., J.C. del Pozo, J. Iglesias, V. Rubio, R. Solano, A. de la Pena, A. Leyva and J. Paz-Ares (2000) Influence of cytokinins on the expression of phosphate responsive genes in Arabidopsis. Plant J. 24: 559–567.CrossRefPubMedGoogle Scholar
  21. Mendoza, C., V.E. Viteri, B. L ö nnerdal, K.A. Young, V. Raboy and K.H. Brown (1998) Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas . Am. J. Clin. Nutr . 68: 1123–1128.PubMedGoogle Scholar
  22. Mulugu, S., W. Bai, P.C. Fridy, R.J. Bastidas, J.C. Otto, D.E. Dollins, T.A. Haystead, A.A. Ribeiro and J.D. York (2007) A conserved family of enzymes that phosphorylate inositol hexaphos-phate. Science 316: 106–109.CrossRefPubMedGoogle Scholar
  23. Muniz, L.M., J. Royo, E. Gomez, C. Barrero, D. Bergareche and G. Hueros (2006) The maize transfer cell-specific type-A response regulator ZmTCRR-1 appears to be involved in intercellular signalling. Plant J. 48: 17–27.CrossRefPubMedGoogle Scholar
  24. Nagy, R., M.J.V. Vasconcelos, S. Zhao, J. McElver, W. Bruce, N. Amrhein, K.G. Raghothama and M. Bucher (2006) Differential regulation of five Pht1 phosphate transporters from maize ( Zea mays L.). Plant Biol. 8: 186–197.CrossRefPubMedGoogle Scholar
  25. Ockenden, I., J.A. Dorsch, M.M. Reid, L. Lin, L.K. Grant, V. Raboy and J.N.A. Lott (2004) Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley ( Hordeum vulgare L.) low phytic acid genotypes. Plant Sci. 167: 1131–1142.CrossRefGoogle Scholar
  26. O'Dell, B.L., A.R. de Boland and S.R. Koirtyohann (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains . J. Agric. Food Chem . 20: 718–721.CrossRefGoogle Scholar
  27. Olsen, O.-A. (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16: S214–S227.CrossRefPubMedGoogle Scholar
  28. Oltmans, S.E., W.R. Fehr, G.A. Welke, V. Raboy and K.L. Peterson (2005) Agronomic and seed traits of soybean lines with low-phytate phosphorus . Crop Sci. 45: 593–598.CrossRefGoogle Scholar
  29. Pilu, R., D. Panzeri, G. Gavazzi, S.K. Rasmussen, G. Consonni and E. Nielsen (2003) Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant ( lpa241). Theor. Appl. Genet . 107: 980–987.CrossRefPubMedGoogle Scholar
  30. Raboy, V. (1997) Low phytic acid mutants and selection thereof. US Patent No. 5,689,054.Google Scholar
  31. Raboy, V. (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64: 1033–1043.CrossRefPubMedGoogle Scholar
  32. Raboy, V. (2007) Seed phosphorus and low-phytate crops. In: Turner, B.L., A.E. Richardson and E.J. Mullaney (Eds.), Inositol Phosphates: Linking Agriculture and Environment. CAB International, Oxfordshire, pp. 111–132.CrossRefGoogle Scholar
  33. Raboy, V. and D.B. Dickinson (1984) Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc . Plant Physiol. 75: 1094–1098.CrossRefPubMedGoogle Scholar
  34. Raboy, V., D.B. Dickinson and M.G. Neuffer (1990) A survey of maize kernel mutants for variation in phytic acid . Maydica 35: 383–390.Google Scholar
  35. Raboy, V., P.F. Gerbasi, K.A. Young, S.D. Stoneberg, S.G. Pickett, A.T. Bauman, P.P.N. Murthy, W.F. Sheridan and D.S. Ertl (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2−1. Plant Physiol. 124: 355–368.CrossRefPubMedGoogle Scholar
  36. Raboy, V., K.A. Young, J.A. Dorsch and A. Cook (2001) Genetics and breeding of seed phosphorus and phytic acid . J. Plant Physiol . 158: 489–497.CrossRefGoogle Scholar
  37. Rasmussen, S.K. and F. Hatzack (1998) Identification of two low-phytate barley ( Hordeum vul-gare L.) grain mutants by TLC and genetic analysis . Hereditas 129: 107–112.CrossRefGoogle Scholar
  38. Rausch, K.D. and R.L. Belyea (2006) The future of coproducts from corn processing. Appl. Biochem. Biotech . 128: 47–86.CrossRefGoogle Scholar
  39. Sharpley, A.N., S.C. Chapra, R. Wedepohl, J.T. Sims, T.C. Daniel and K.R. Reddy (1994) Managing agricultural phosphorus for protection of surface waters: issues and options . J. Environ. Qual . 23: 437–451.CrossRefGoogle Scholar
  40. Shi, J., H. Wang, Y. Wu, J. Hazebroek, R.B. Meeley and D.S. Ertl (2003) The maize low phytic acid mutant lpa 2 is caused by mutation in an inositol phosphate kinase gene . Plant Physiol 131: 507–515.CrossRefPubMedGoogle Scholar
  41. Shi, J., H. Wang, J. Hazebroek, D.S. Ertl and T. Harp (2005) The maize low-phytic acid3 encodes a myo -inositol kinase that plays a role in phytic acid biosynthesis in developing seeds . Plant J . 42: 708–719.CrossRefPubMedGoogle Scholar
  42. Shi, J., H. Wang, K. Schellin, B. Li, M. Faller, J.M. Stoop, R.B. Meeley , D.S. Ertl , J.P. Ranch and K. Glassman (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds . Nat. Biotech. 25: 930–937CrossRefGoogle Scholar
  43. Spear, J.D. and W.R. Fehr (2007) Genetic improvement of seedling emergence of soybean lines low phytate. Crop Sci. 47: 1354–1360.CrossRefGoogle Scholar
  44. Spencer, J.D., G.L. Allee, and T.W. Sauber (2000a) Phosphorus bioavailability and digestibility of normal and genetically modified low-phytate corn for pigs . J. Anim. Sci . 78: 675–681.Google Scholar
  45. Spencer, J.D., G.L. Allee and T.W. Sauber (2000b) Growing-finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn . J. Anim. Sci . 78: 1529–1536.Google Scholar
  46. Stephens, L.R. and R.F. Irvine (1990) Stepwise phosphorylation of myo -inositol leading to myo inositol hexakisphosphate in Dictyostelium. Nature 346: 580–583.CrossRefPubMedGoogle Scholar
  47. Stephens, L., T. Radenberg, U. Thiel, G. Vogel, K.-H. Khoo, A. Dell, T.R. Jackson, P.T. Hawkins and G.W. Mayr (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s) . J. Biol. Chem . 268: 4009–4015.PubMedGoogle Scholar
  48. Stevenson-Paulik, J., G.J. Bastidas, S.-T. Chiou, R.A. Frye and J.D. York (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases . Proc. Natl. Acad. Sci. (USA) 102: 12612–12617.CrossRefGoogle Scholar
  49. Stilborn, H.L., R.C. Crum, D.W. Rice, C.A. Saunders, M.A. Hinds, D.S. Ertl, L.R. Beach, W.E. Huff and R.A. Kleese (2002) Method of reducing cholesterol in eggs. US Patent No. 6,391,348 B1.Google Scholar
  50. Thomson, C.J. and T.P. Bolger (1993) Effects of seed phosphorus concentration on the emergence and growth of subterranean clover ( Trifolium subterraneum). Plant Soil 155/156: 285–288.CrossRefGoogle Scholar
  51. Torabinejad, J. and G.E. Gillaspy (2006) Functional genomics of inositol metabolism. In: Majumder, A.L. and B.B. Biswas (Eds.), Biology of Inositols and Phosphoinositides. Springer, New York, pp. 47–70.CrossRefGoogle Scholar
  52. van Dongen, J.T., R.G.W. Laan, M. Wouterlood and A.C. Borstlap (2001) Electrodiffusional uptake of organic cations by pea seed coats. Further evidence for poorly selective pores in the plasma membrane of seed coat parenchyma cells . Plant Physiol. 126: 1688–1697.CrossRefPubMedGoogle Scholar
  53. Volk, H., J.A. Metcalf and P.J.A. Withers (2000) Prospects for minimizing phosphorus excretion in ruminants by dietary manipulation . J. Environ. Qual . 29: 28–36.CrossRefGoogle Scholar
  54. Wardyn, B.M. and W.K. Russell (2004) Resource allocation in a breeding program for phosphorus concentration in maize grain . Crop Sci. 44: 753–757.CrossRefGoogle Scholar
  55. Wilson, M.P. and P.W. Majerus (1996) Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme . J. Biol. Chem . 271: 11904–11910.CrossRefPubMedGoogle Scholar
  56. York, J.D., A.R. Odom, R. Murphy, E.B. Ives and S.R. Wente (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export . Science 285: 96–100.CrossRefPubMedGoogle Scholar
  57. Zhu, Y.-G. and S.E. Smith (2001) Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi . Plant Soil 231: 105–112.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Victor Raboy

There are no affiliations available

Personalised recommendations