Maize Al Tolerance

  • Leon V. Kochian
  • Owen A. Hoekenga
  • Jurandir V. Magalhaes
  • Miguel A. Piñeros


Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Currently, there is considerable interest in facilitating further improvements in maize Al tolerance via interdisciplinary efforts aimed at identifying the genes conferring tolerance and the associated physiological mechanisms in maize. This chapter describes recent research into the physiology, genetics and molecular biology of maize Al tolerance, and potential candidate Al tolerance genes in maize are also discussed.


Hydroponic Culture Miniature Inverted Repeat Transposable Element Citrate Exudation Organic Acid Transporter Citrate Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993a) Al tolerance in wheat (Triticum aestivum L.): I. Uptake and distribution of Al in root apices. Plant Physiol 103: 685–693.Google Scholar
  2. Delhaize E, Ryan PR, Randall PJ (1993b) Al tolerance in wheat (Triticum aestivum L.) II. Al-stimulated excretion of malic acid from root apices. Plant Physiol 103: 695–702.Google Scholar
  3. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level Al tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101: 15249–15254.CrossRefPubMedGoogle Scholar
  4. Furukawa J, Yamaii N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48: 1081–1091.CrossRefPubMedGoogle Scholar
  5. Gallais A, Moreau L, Charcosset A (2007) Detection of marker-QTL associations by studying change in marker frequencies with selection. TAG. Theor Appl Genet 114: 669–681.CrossRefGoogle Scholar
  6. Giaveno C, Miranda Filho J (2002a) Selection methods for maize seedlings in greenhouse as related to aluminum tolerance. Sci Agricola 59: 807–810.Google Scholar
  7. Giaveno C, Miranda Filho J (2002b) Field comparison between selection methods at the maize seedling stage in relation to aluminum tolerance. Sci Agricola 59: 397–401.Google Scholar
  8. Granados G, Pandey S, Ceballos H (1993) Response to selection for tolerance to acid soils in a tropical maize population. Crop Sci 33: 936–940.CrossRefGoogle Scholar
  9. Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for Al tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103: 9738–9743.CrossRefPubMedGoogle Scholar
  10. Ishikawa S, Wagatsuma T, Sasaki R, Ofei-Manu P (2000) Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci Plant Nutr 46: 751–758.Google Scholar
  11. Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S (2006) Gramene: A bird's eye view of cereal genomes. Nucleic Acids Res 34: D717–D723.CrossRefPubMedGoogle Scholar
  12. Jorge RA, Arruda P (1997) Al-induced organic acids exudation by roots of an Al-tolerant tropical maize. Phytochemistry 45: 675–681.CrossRefGoogle Scholar
  13. Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium tolerance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52: 1339–1352.CrossRefPubMedGoogle Scholar
  14. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils?–Mech-anisms of Al tolerance and phosphorous efficiency. Annu Rev Plant Biol 55: 459–493.CrossRefPubMedGoogle Scholar
  15. Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant Al tolerance and toxicity. Plant Soil 274: 175–195.CrossRefGoogle Scholar
  16. Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Al activates a citrate-permeable anion channel in the Al-sensitive zone of the maize root apex. A comparison between an Al-sensitive and an Al-resistant cultivar. Plant Physiol 126: 397–410.Google Scholar
  17. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48: 453–461.CrossRefPubMedGoogle Scholar
  18. Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto M (2006) The BnALMT1 and BnALMT2 genes from Brassica napus L. encode al-activated malate transporters that enhance the al tolerance of plant cells. Plant Physiol 142.Google Scholar
  19. Liu J, Magalhaes J V, Shaff JE, Kochian LV (2008) Aluminum-activated citrate and malate transporters function independently in conferring aluminum tolerance in Arabidopsis. Plant Journal (in press).Google Scholar
  20. Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance. Plant Cell Physiol 43: 652–659.CrossRefPubMedGoogle Scholar
  21. Magalhaes J V. 2002. Molecular genetic and physiological investigations of aluminum tolerance in sorghum ( Sorghum bicolor L. Moench). Ph.D. dissertation. Cornell University, Ithaca, NY 14853.Google Scholar
  22. Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers Al tolerance in sorghum. Nat Genet 39: 1156–1161.CrossRefPubMedGoogle Scholar
  23. Magnavaca R, Gardner C, Clark R (1987a) Evaluation of inbred maize lines for aluminum tolerance in nutrient solution. In Genetic aspects of plant mineral nutrition, W. Gabelman and B. Loughman, eds (Dordrecht, the Netherlands: Martinus Nijhoff), pp. 255–265.Google Scholar
  24. Magnavaca R, Gardner C, Clark R (1987b) Inheritance of aluminum tolerance in maizeH. Gabelman and B. Loughman. In Genetic aspects of plant mineral nutrition, , eds (Dordrecht, the Netherlands: Martinus Nijhoff), pp. 201–212.Google Scholar
  25. Magnavaca R, Gardner C, Clark R (1987c) Comparisons of maize populations for aluminum tolerance in nutrient solutionW. Gabelman and B. Loughman. In Genetic aspects of plant mineral nutrition, , eds (Dordrecht, the Netherlands: Martinus Nijhoff), pp. 189–199.Google Scholar
  26. Mariano ED , Keltjens WG (2003) Evaluating the role of root citrate exudation as a mechanism of aluminium tolerance in maize genotypes. Plant and Soil 256: 469–479.CrossRefGoogle Scholar
  27. Mason PA (August, 2005) Molecular and genetic investigations of aluminum tolerance in wheat ( Triticum aestivum ) and maize ( Zea mays ). PhD Thesis, Cornell University.Google Scholar
  28. Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of Al in tea leaves. Plant Cell Physiol 17: 627–631.Google Scholar
  29. Moon D, Ottoboni L, Souza A, Sibov S, Gaspar M, Arruda P (1997) Somaclonal variation induced aluminum sensitive mutant from an aluminum tolerant inbred line. Plant Cell Rep 16: 686–691.CrossRefGoogle Scholar
  30. Nguyen B, Brar D, Bui B, Nguyen T, Pham L, Nguyen H (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106: 583–593.PubMedGoogle Scholar
  31. Nguyen V, Burow M, Nguyen H, Le B, Le T, Paterson A (2001) Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102: 1002–1010.CrossRefGoogle Scholar
  32. Nguyen V, Nguyen B, Sarkarung S, Martinez C, Paterson A, Nguyen H (2002) Mapping of genes controlling aluminum tolerance in rice: Comparison of different genetic backgrounds. Mol Genet Genomics 267: 772–780.CrossRefPubMedGoogle Scholar
  33. Ninamango-Cardenas F, Guimaraes C, Martins P, Parentoni S, Carneiro N, Lopes M, Moro J, Paiva E (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica 130: 223–232.CrossRefGoogle Scholar
  34. Ofei-Manu P, Wagatsuma T, Ishikawa S, Tawaraya K (2001) The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Sci. Plant Nutr 47: 359–375.Google Scholar
  35. Pellet DM, Grunes DL, Kochian LV (1995) Organic-acid exudation as an Al-tolerance mechanism in maize (Zea-Mays L.). Planta 196: 788–795.CrossRefGoogle Scholar
  36. Piñeros MA, Cançado GMA, Maron LG, Lyi SM, Menossi M, Kochian LV (2007) Not all ALMT1-type transporters mediate Al-activated organic acid responses: The case of ZmALMT1–An anion selective transporter. Plant J 53: 352–367.CrossRefPubMedGoogle Scholar
  37. Piñeros MA, Kochian LV (2001) A patch-clamp study on the physiology of Al toxicity and Al tolerance in maize. Identification and characterization of Al 3+ -induced anion channels. Plant Physiol 125: 292–305.Google Scholar
  38. Piñeros MA, Magalhaes JV, Carvalho Alves VM, Kochian LV (2002) The physiology and biophysics of an Al tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129: 1194–1206.CrossRefPubMedGoogle Scholar
  39. Piñeros MA, Shaff JE, Manslank HS, Alves VMC, Kochian LV (2005) Al tolerance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137: 231–241.Google Scholar
  40. Pineros MA, Shaff JE, Manslank HS, Alves VM, Kochian LV (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137: 231–241.Google Scholar
  41. Raman H, Zhang KR, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48: 781–791.PubMedGoogle Scholar
  42. Ryan PR, Delhaize E, Randall PJ (1995a) Characterization of Al-stimulated efflux of malate fromv the apices of Al-tolerant wheat roots. Planta 196: 103–110.CrossRefGoogle Scholar
  43. Ryan PR, Delhaize E, Randall PJ (1995b) Malate efflux from root apices and tolerance to Al Are highly correlated in wheat. Aust J Plant Physiol 22: 531–536.CrossRefGoogle Scholar
  44. Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Al activates an anion channel in the apical cells of wheat roots. Proceedings of the National Academy of Sciences of the United States of America 94: 6547–6552.CrossRefPubMedGoogle Scholar
  45. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an Al-activated malate transporter. Plant J 37: 645–653.CrossRefPubMedGoogle Scholar
  46. Sibov S, Gaspar M, Silva M, Ottoboni L, Arruda P, Souza A (1999) Two genes control aluminum tolerance in maize: Genetic and molecular mapping analyses. Genome 42: 475–482.CrossRefGoogle Scholar
  47. von Uexküll HR, Mutert E (1995) Global Extent, Development and Economic-Impact of Acid Soils. Plant and Soil 171: 1–15.CrossRefGoogle Scholar
  48. Wu P, Liao C, Hu B, Yi K, Jin W, Ni J, He C (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100: 1295–1303.CrossRefGoogle Scholar
  49. Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46: 812–816.CrossRefPubMedGoogle Scholar
  50. Zhang WH, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by Al in the apical cells of wheat roots. Plant Physiol 125: 1459–1472.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leon V. Kochian
  • Owen A. Hoekenga
  • Jurandir V. Magalhaes
  • Miguel A. Piñeros

There are no affiliations available

Personalised recommendations