Cell Biology of Maize Leaf Development

  • Anne W. Sylvester
  • Laurie G. Smith


The maize leaf has a simple cellular architecture that is amenable to cell biological study. Combined with the spatially defined growth gradients in the leaf, maize cells are useful for investigating how cell division and expansion are controlled spatially and temporally. Here we present recent advances in our understanding of molecular controls of cell division and expansion, particularly as mediated through the dynamic functions of the plant cytoskeleton and via analysis of mutants. We contend that the maize leaf epidermis is a particularly useful platform for study due its ordered growth pattern and the linear array of cells. Current advances and emerging tools are discussed that will allow the power of maize genetics to be fully realized at a cell biological level.


Cortical Microtubule Proliferative Zone Subsidiary Cell Bundle Sheath Cell Pavement Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Elinor Flores for assisting with the manuscript. Research in the Sylvester lab was supported by grants from DOE Energy Biosciences (PR 03-00ER15098.00), NSF (DBI # 0501862) and USDA (2001-35304-09899). Research in the Smith lab was supported by grants from NIH (GM-53137), NSF (IOB-0544226), and USDA (2006-35304-17342).


  1. Abedon, B. G., Hatfield, R. D. and Tracy, W. F. (2006) Cell wall composition in juvenile and adult leaves of maize (Zea mays L.) J. Agric. Food Chem. 54, 3896–3900.CrossRefPubMedGoogle Scholar
  2. Apostolakos, P., Galatis, B. and Panteris, E. (1991) Microtubules in cell morphogenesis and intercellular space formation in Zea mays leaf mesophyll and Pilea caderei epithem. J. Plant Physiol. 13, 591–601.Google Scholar
  3. Appenzeller, L., Doblin, M. S., Barreiro, R., Wang, H., Niu, X., Kollipara, K., Carrigan, L., Tomes, D., Chapman, M. and Dhugga, K. S. (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose. 11, 287–299.CrossRefGoogle Scholar
  4. Baskin, T. I. (2006) Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21, 203–222.CrossRefGoogle Scholar
  5. Ben-Haj-Salah, H. and Tardieu, F. (1995) Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiol. 109, 861–870.PubMedGoogle Scholar
  6. Blancaflor, E. B. (2000) Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize ( Zea mays L.). J. Plant Growth Regul. 19, 406–414.PubMedGoogle Scholar
  7. Burk, D. H., Liu, B., Zhong, R., Morrison, W. H. and Ye, Z. H. (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807–827.CrossRefPubMedGoogle Scholar
  8. Cahoon, A. B., Takacs, E. M., Sharpe, R. M. and Stern, D. B. (2007) Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. Plant Mol. Biol. 66:33–46.CrossRefPubMedGoogle Scholar
  9. Camilleri, C., Azimzadeh, J., Pastuglia, M., Bellini, C., Grandjean, O. and Bouchez, D. (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton . Plant Cell 14, 833–845.CrossRefPubMedGoogle Scholar
  10. Carpita, N. C., Defernez, M., Findlay, K., Wells, B., Shoue, D. A., Catchpole, G., Wlson, R. H. and McCann, M. C. (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 127, 551–565.CrossRefPubMedGoogle Scholar
  11. Charlton, W. A. (1990) Stomatal pattern in four species of monocotyledons. Ann. Bot. 66, 567–578.Google Scholar
  12. Chin, J., Wan, Y., Smith, J. and Croxdale, J. (1995) Linear aggregations of stomata and epidermal cells in Tradescantia leaves: evidence for their group patterning as a function of the cell cycle. Dev. Biol. 168, 39–46.CrossRefPubMedGoogle Scholar
  13. Cho, S. O. and Wick, S. M. (1989) Microtubule orientation during stomatal differentiation in grasses. J. Cell Sci. 92y, 581–594.Google Scholar
  14. Cho, S. and Wick, S. M. (1990) Distribtuion and function of actin in the developing stomatal complex of winter rye ( Secale cereale cv. Puma). Protoplasma 157, 154–164.CrossRefGoogle Scholar
  15. Cleary, A. L. (1995) F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhadamine-phalloidin. Protoplasma 185, 152–165.CrossRefGoogle Scholar
  16. Cleary, A. L. and Mathesius, U. (1996) Rearrangement of F-actin during stomatogenesis visualized by confocal microscopy in fixed and permeabilized Tradescantia leaf epidermis. Bot. Acta. 109, 15–24.Google Scholar
  17. Cleary, A. L. and Smith, L. G. (1998) The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10 1875–1888.CrossRefPubMedGoogle Scholar
  18. Cleary, A. L., Gunning, B. E. S., Wasteneys, G. O. and Hepler, P. K. (1992) Microtubule and F-actin dynamics at the division site in living Tradescantia stamen hair cells. J. Cell Sci. 103, 977–988.Google Scholar
  19. Cribb, L., Hall, L. N. and Langdale, J. A. (2001) Four mutant alleles elucidate the role of the G2 protein in the development of C(4) and C(3) photosynthesizing maize tissues. Genetics 159, 787–797.PubMedGoogle Scholar
  20. Cyr, R. J. (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu. Rev. Cell Biol. 10, 153–180.CrossRefPubMedGoogle Scholar
  21. Dickison W. C. (2000) Integrative Plant Anatomy. Harcourt Academic Press, San Diego.Google Scholar
  22. Djakovic, S., Dyachok, J., Burke, M., Frank, M. J. and Smith, L. G. (2006) BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133, 1091–1100.CrossRefPubMedGoogle Scholar
  23. Fiorani, F. and Beemster, G. T. (2006) Quantitative analyses of cell division in plants. Plant Mol. Biol. 60, 963–979.CrossRefPubMedGoogle Scholar
  24. Fiorani, F., Beemster, G. T. S., Bultynck, L. and Lamers, H. (2000) Can meristematic activity determine variation in leaf size and elongation rate among four poa species? A kinematic study. Plant Physiol. 124, 845–856.CrossRefPubMedGoogle Scholar
  25. Foster, R, Mattsson, O, and Mundy, J. (2003) Plants flex their cytoskeletons. Trends Plant Sci 8:202–204CrossRefPubMedGoogle Scholar
  26. Frank, M. J. and Smith, L. G. (2002) A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr. Biol. 12, 849–853.CrossRefPubMedGoogle Scholar
  27. Frank, M. J., Cartwright, H. N. and Smith, L. G. (2003) Three brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130, 753–762.CrossRefPubMedGoogle Scholar
  28. Freeling, M. and Lane, B. (1994) The Maize Leaf. In: M. Freeling and V. Wlbot (Eds.) The Maize HandbookSpringer-Verlag, New York. (pp. 17–29).Google Scholar
  29. Fricke, W. (2002) Biophysical limitation of cell elongation in cereal leaves. Ann. Bot. (Lond.) 90, 157–167.CrossRefGoogle Scholar
  30. Fu, Y., Li, H. and Yang, Z. (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14, 777–794.CrossRefPubMedGoogle Scholar
  31. Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G. and Yang, Z. (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687–700.CrossRefPubMedGoogle Scholar
  32. Gallagher, K. and Smith, L. G. (1999) discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis. Development 126, 4623–4633.PubMedGoogle Scholar
  33. Gallagher, K. and Smith, L. G. (2000) Roles for polarity and nuclear determinants in specifying daughter cell fates after an asymmetric cell division in the maize leaf. Curr. Biol. 10, 1229–1232.CrossRefPubMedGoogle Scholar
  34. Gan, Y., Kumimoto, R., Liu, C., Ratcliffe, O., Yu, H. and Broun, P. (2006) Glabrous inflorescence stems modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in arabidopsis. Plant Cell 18, 1383–1395.CrossRefPubMedGoogle Scholar
  35. Giles, K. L. and Shehata, A. I. (1984) Some observations on the relationship between cell division and cell determination in the epidermis of the developing leaf of corn ( Zea mays). Bot. Gaz. 145, 60–65.CrossRefGoogle Scholar
  36. Granier, C., Inze, D. and Tardieu, F. (2000) Spatial distribution of cell division rate can be deduced from that of p34(cdc2) kinase activity in maize leaves grown at contrasting temperatures and soil water conditions. Plant Physiol. 124, 1393–402.CrossRefPubMedGoogle Scholar
  37. Green, P. B. (1984) Shifts in plant cell axiality: histogenetic influences on cellulose orientation in the succulent, Graptopetalum. Dev. Biol. 103, 18–27.CrossRefPubMedGoogle Scholar
  38. Hernandez, M. L., Passas, H. J. and Smith, L. G. (1999) Clonal analysis of epidermal patterning during maize leaf development. Dev. Biol. 216, 646–658.CrossRefPubMedGoogle Scholar
  39. Hogetsu, T. (1989) The arrangement of microtubules in leaves of monocotyledonous and dicotyledonous plants. Can. J. Bot. 67, 3506–3512.CrossRefGoogle Scholar
  40. Horiguchi, G., Fujikura, U., Ferjani, A., Ishikawa, N. and Tsukaya, H. (2006) Large-scale histo-logical analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J. 48, 638–644.CrossRefPubMedGoogle Scholar
  41. Jürgens, G. (2005) Cytokinesis in higher plants. Annu. Rev. Plant Biol. 56, 281–299.CrossRefPubMedGoogle Scholar
  42. Kennard, J. L. and Cleary, A. L. (1997) Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1 of the cell cycle and requires F-actin. Cell Motil. Cytoskeleton 36, 55–67.CrossRefPubMedGoogle Scholar
  43. Langdale, J. A., Rothermel, B. A. and Nelson, T. (1988) Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 2, 106–115.CrossRefPubMedGoogle Scholar
  44. Lauter, N., Kampani, A., Carlson, S., Goebel, M. and Moose, S. P. (2005) MicroRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Natl. Acad. Sci. USA 102, 9412–9417.CrossRefPubMedGoogle Scholar
  45. Liu, B. and Palevitz, B. A. (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil. Cytoskeleton 23, 252–264.CrossRefGoogle Scholar
  46. Lu, L., Lee, Y. R. J., Pan, R., Maloof, J. N. and Liu, B. (2005) An internal motor kinesin is associated with the golgi apparatus and plays a role in trichome morphogenesis in arabidopsis. Mol. Biol. Cell 16, 811–823.CrossRefPubMedGoogle Scholar
  47. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin/Cummings Publishing Company, Menlo Park, California.Google Scholar
  48. Mineyuki, Y. (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int. Rev. Cytol. 187, 1–49.CrossRefGoogle Scholar
  49. Mitkovski, M. and Sylvester, A. W. (2003) Analysis of cell patterns in developing maize leaves: dark-induced cell expansion restores normal division orientation in the mutant tangled. Int. J. Plant Sci. 164, 113–124.CrossRefGoogle Scholar
  50. Moose, S. P. and Sisco, P. H. (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10, 3018–3027.CrossRefPubMedGoogle Scholar
  51. Moose, S. P., Lauter, N. and Carlson, S. R. (2004) The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity. Genetics 166, 1451–1461.CrossRefPubMedGoogle Scholar
  52. Muller, B., Reymond, M. and Tardieu, F. (2001) The elongation rate at the base of a maize leaf shows an invariant pattern during both the steady-state elongation and the establishment of the elongation zone. J. Exp. Bot. 52, 1259–1268.CrossRefPubMedGoogle Scholar
  53. Muller, B., Bourdais, G., Reidy, B., Bencivenni, C., Massonniau, A., Condamine, P., Rolland, G., Conejero, G., Rogowsky, P. and Tardieu, F. (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol. 143, 278–290.CrossRefPubMedGoogle Scholar
  54. Otegui, M. S., Verbrugghe, K. J. and Skop, A. R. (2005) Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol. 15, 404–413.CrossRefPubMedGoogle Scholar
  55. Panteris, E. and Galatis, B. (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol. 167, 721–732.CrossRefPubMedGoogle Scholar
  56. Panteris, E., Apostolakos, P. and Galatis, B. (1994) Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytol. 127, 771–780.CrossRefGoogle Scholar
  57. Panteris, E., Apostolakos, P. and Galatis, B. (2006) Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cell Motil. Cytoskeleton 63, 696–709.CrossRefGoogle Scholar
  58. Panteris, E., Galatis, B., Quader, H. and Apostolakos, P. (2007) Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum. Cell Motil. Cytoskeleton 64, 531–548.CrossRefGoogle Scholar
  59. Paredez, A., Wright, A. and Ehrhardt, D. W. (2006a) Microtubule cortical array organization and plant cell morphogenesis . Curr. Opin. Plant Biol. 9, 571–578.CrossRefGoogle Scholar
  60. Paredez, A. R., Somerville, C. R. and Ehrhardt, D. W. (2006b) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495.CrossRefGoogle Scholar
  61. Perchorowicz, J. T. and Gibbs, M. (1980) Carbon dioxide fixation and related properties in sections of the developing green maize leaf. Plant Physiol. 65, 802–809.CrossRefPubMedGoogle Scholar
  62. Pickett-Heaps, J. D. (1969) Preprophase microtubule bands in some abnormal mitotic cells of wheat. J. Cell Sci. 4, 397–420.PubMedGoogle Scholar
  63. Pickett-Heaps, J. D. and Northcote, D. H. (1966) Cell division in the formation of the stomatal complex of the young leaves of wheat. J. Cell Sci. 1, 121–128.PubMedGoogle Scholar
  64. Qiu, J., Jilk, R., Marks, M. D. and Szymanski, D. B. (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14, 101–118.CrossRefPubMedGoogle Scholar
  65. Raschke, K. (1975) Stomata action. Annu. Rev. Plant Physiol. 26, 306–340.CrossRefGoogle Scholar
  66. Reynolds, J. O., Eisses, J. F. and Sylvester, A. W. (1998) Balancing division and expansion during maize leaf morphogenesis: analysis of the mutant, warty-1. Development 125, 259–268.PubMedGoogle Scholar
  67. Rodríquez, A. A., Grunberg, K. A. and Taleisnik, E. L. (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol. 129, 1627–1632.CrossRefGoogle Scholar
  68. Rossini, L., Cribb, L., Martin, D. J. and Langdale, J. A. (2001) The maize golden2 gene defines a novel vlass of transcriptional regulators in plants. Plant Cell 13, 1231–1244.CrossRefPubMedGoogle Scholar
  69. Roth, R., Hall, L. N., Brutnell, T. P. and Langdale, J. A. (1996) Bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the maize leaf. Plant Cell 8, 915–927.CrossRefPubMedGoogle Scholar
  70. Rymen, B., Fiorani, F., Karal, F., Vandepoele, K., Inze, D. and Veemster, G. T. (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol. 143, 1429–1438.CrossRefPubMedGoogle Scholar
  71. Samuels, A. L., Giddings, T. H. J. and Staehelin, L. A. (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J. Cell Biol. 130, 1345–1357.CrossRefPubMedGoogle Scholar
  72. Sano, T., Higaki, T., Oda,, Y., Hayashi, T. and Hasezawa, S. (2005) Appearance of actin microfilament ‘twin peaks’ in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J. 44, 595–605.CrossRefPubMedGoogle Scholar
  73. Schnyder, H., Nelson, C. J. and Coutts, J. H. (1987) Assessment of spatial distribution of growth in the elongation zone of grass leaf blades. Plant Physiol. 85, 290–293.CrossRefPubMedGoogle Scholar
  74. Segui-Simarro, J. M., Austin, J. R., White, E. A. and Staehelin, L. A. (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16, 836–856.CrossRefPubMedGoogle Scholar
  75. Sharman, B. C. (1942) Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6, 245–282.Google Scholar
  76. Smith, L. G. (2003) Cytoskeletal control of plant cell shape: getting the fine points. Curr. Opin. Plant Biol. 6, 63–73.CrossRefPubMedGoogle Scholar
  77. Smith, L. G. and Oppenheimer, D. G. (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol. 21, 271–295.CrossRefPubMedGoogle Scholar
  78. Smith, L. G., Hake, S. and Sylvester, A. W. (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122, 481–489.PubMedGoogle Scholar
  79. Smith, L. G., Gerttula, S. M., Han, S. and Levy, J. (2001) TANGLED1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J. Cell Biol. 152, 231–236.CrossRefPubMedGoogle Scholar
  80. Somerville, C. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22, 53–78.CrossRefPubMedGoogle Scholar
  81. Staehelin, L. A. and Hepler, P. K. (1996) Cytokinesis in higher plants. Cell 84, 821–824.CrossRefPubMedGoogle Scholar
  82. Stebbins, G. L. and Shah, S. S. (1960) Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Gramineae. Dev. Biol. 2, 477–500.CrossRefGoogle Scholar
  83. Steeves, T. A. and Sussex, I. M. (1989) Patterns in Plant Development. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  84. Sylvester, A. W. (2000) Division decisions and the spatial regulation of cytokinesis. Curr. Opin. Plant Biol. 3, 58–66.CrossRefPubMedGoogle Scholar
  85. Sylvester, A. W., Cande, W. Z. and Freeling, M. (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110, 985–1000.PubMedGoogle Scholar
  86. Sylvester, A. W., Smith, L. and Freeling, M. (1996) Acquisition of identity in the developing leaf. Annu. Rev. Cell Dev. Biol. 12, 257–304.CrossRefPubMedGoogle Scholar
  87. Sylvester, A. W., Parker-Clark, V. and Murray, G. A. (2001) Leaf shape and anatomy as indicators of phase change in the grasses: comparison of maize, rice and bluegrass. Am. J. Bot. 88, 2157–2167.CrossRefGoogle Scholar
  88. Szymanski , D. B. (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr. Opin. Plant Biol. 8, 103–112.CrossRefPubMedGoogle Scholar
  89. Tardieu, F. and Granier, C. (2000) Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Mol. Biol. 43, 555–567.CrossRefPubMedGoogle Scholar
  90. Tardieu, F., Reymond, M., Hamard, P., Granier, C. and Muller, B. (2000) Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J. Exp. Bot. 51, 1505–1514.CrossRefPubMedGoogle Scholar
  91. Urbanowicz, B. R., Rayon, C. and Carpita, N. C. (2004) Topology of the maize mixed-linkage (1rarr;3),(1rarr;4)-β-D-glucan synthase at the golgi membrane. Plant Physiol. 134, 758–768.CrossRefPubMedGoogle Scholar
  92. Vega, S. H., Sauer, M., Orkwiszewski, J. A. and Poethig, R. S. (2002) The early phase change gene in maize. Plant Cell 14, 133–147.CrossRefPubMedGoogle Scholar
  93. Vernoud,V, Horton, A. C., Yang, Z and Nielsen, E. (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 131, 1191–1208.CrossRefPubMedGoogle Scholar
  94. Walker, K. L., Muller, S., Moss, D., Ehrhardt, D. W. and Smith, L. G. (2007) Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827–1836.CrossRefPubMedGoogle Scholar
  95. Williams, M. H. and Sylvester, A. W. (1994) Scanning Electron Microscopy. In: M. Freeling and V. Walbot (Eds.), The Maize Handbook (pp. 108–118). Springer-Verlag, New York.Google Scholar
  96. Yong, W. Link, B., O'Malley, R., Tewari, J., Hunter, C. T., Lu, C., Li, X., Bleecker, A. B., Koch, K. E., McCann, M. E., McCarty, D. R., Patterson, S. E., Reiter, W-D., Staiger, C., Thomas, S. R., Vermerris, W. and Carpita, N. C. (2005) Genomics of plant cell wall biogenesis. Planta 221, 747–751.CrossRefPubMedGoogle Scholar
  97. Zhang, J. M., Sylvester A. W., Li D. Q. and Sun X. P. (2006) Complementation and expression analysis of SoRab1A and SoRab2A in sugarcane demonstrates their functional diversification. J. Integr. Plant Biol. 48, 1450–1457.CrossRefGoogle Scholar
  98. Zhang, J., Hill D. R. and Sylvester, A. W. (2007) Diversification of the RAB GTPase family in dicots and monocots. J. Integr. Plant Biol. 49:1129–1141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anne W. Sylvester
  • Laurie G. Smith

There are no affiliations available

Personalised recommendations