Vegetative Shoot Meristems

  • Dave Jackson


The shoot apical meristem (SAM) is responsible for the indeterminate growth of the maize shoot. Formed during embryogenesis, the SAM consists of a pool of stem cells that divide to give rise to daughter cells that either maintain stem cell fate or are incorporated into leaf primordia, axillary shoot meristems or the growing stem tissues. Classical studies over the past century have revealed the cellular organization of the SAM, its ability to respond to systemic signals from distant organs, and behavior and fates of cells in this small but essential structure. More recently, we have started to understand molecular mechanisms of SAM function, an insight that has only been possible through forward genetic analysis. Several pathways for meristem maintenance and proliferation control are now known, however an integrated model of how the meristem functions awaits further genetic and genomic analysis. As the SAM is formed during embryogenesis and persists through the inflorescence phase, and its activity is intimately integrated with leaf initiation, readers are encouraged to also consult the chapters on Maize Embryogenesis by Wolfgang Werr, Axial patterning of the maize leaf by Toshi Foster and Marja Timmermans, Floral Transition in Maize by Joe Colasanti and Mike Muszynski and Inflorescences by Robert Schmidt and Erik Vollbrecht.


Shoot Apical Meristem Leaf Primordia Leaf Initiation Shoot Apical Meristem Initiation Vegetative Shoot Apical Meristem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Sarah Hake for stimulating my interest in shoot apical meristems, Erik Vollbrecht for insightful discussions and for Fig. 2a, and Peter Bommert and Robyn Johnston for comments on the manuscript. I also acknowledge generous support to my lab from the National Science Foundation and the US Department of Agriculture NRICGP.


  1. Abbe, E. C., Phinney, B. O. and Baer, D. F. (1951). The growth of the shoot apex in maize: Internal features. Am. J. Bot.38, 744–751.CrossRefGoogle Scholar
  2. Benitez Alfonso, Y., Cantrill, L. and Jackson, D. (2007). Plasmodesmata: Cell–cell channels in plants (ed. Volkmann, D., Barlow, P. W. and Baluska, F.), New York: Springer.Google Scholar
  3. Bommert, P., Lunde, C., Nardmann, J., Vollbrecht, E., Running, M., Jackson, D., Hake, S. and Werr, W. (2005). Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase . Development132, 1235–1245.CrossRefPubMedGoogle Scholar
  4. Bommineni, V. R., Cheng, P. C. and Walden, D. B. (1995). Reorganization of cells in the maize apical dome within six days of culture after microsurgery. Maydica40, 289–298.Google Scholar
  5. Bortiri, E., Jackson, D. and Hake, S. (2006). Advances in maize genomics: The emergence of positional cloning. Curr. Opin. Plant Biol.9, 164–171.CrossRefPubMedGoogle Scholar
  6. Clark, J. K. and Sheridan, W. F. (1991). Isolation and Characterization of 51 embryo-specific Mutations of Maize . Plant Cell3, 935–951.CrossRefPubMedGoogle Scholar
  7. Clark, S. E., Williams, R. W. and Meyerowitz, E. M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis . Cell89 575–585.CrossRefPubMedGoogle Scholar
  8. Evans, M. M. S. and Barton, M. K. (1997). Genetics of angiosperm shoot apical meristem development. Ann. Rev. Plant Physiol. Plant Mol. Biol.48, 673–701.CrossRefGoogle Scholar
  9. Fletcher, L. C., Brand, U., Running, M. P., Simon, R. and Meyerowitz, E. M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems . Science283, 1911–1914.CrossRefPubMedGoogle Scholar
  10. Giulini, A., Wang, J. and Jackson, D. (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1 . Nature430, 1031–1034.CrossRefPubMedGoogle Scholar
  11. Hake, S. and Freeling, M. (1986). Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knottedmutant maize plants are induced by adjacent mesophyll cells . Nature320, 621–623.CrossRefGoogle Scholar
  12. Hubbard, L., McSteen, P., Doebley, J. and Hake, S. (2002). Expression patterns and mutant phe-notype of teosinte branched1 correlate with growth suppression in maize and teosinte . Genetics162, 1927–1935.PubMedGoogle Scholar
  13. Irish, E. and Nelson, T. (1988). Development of maize plants from cultured shoot apices. Planta175, 9–12.CrossRefGoogle Scholar
  14. Irish, EE. and Karlen, S (1998) Restoration of Juvenility in Maize Shoots by Meristem Culture Int. J Plant Sci. 159(5), 695. DOI: 10.1086/297587CrossRefGoogle Scholar
  15. Jackson, D. and Hake, S. (1999). Control of phyllotaxy in maize by the ABPHYL1gene. Development126, 315–323.PubMedGoogle Scholar
  16. Jackson, D., Veit, B. and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot . Development120, 405–413.Google Scholar
  17. Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P. and Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities . Curr. Biol.15, 1560–1565.CrossRefPubMedGoogle Scholar
  18. Jeong, S., Trotochaud, A. E. and Clark, S. E. (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase . Plant Cell11, 1925–1933.CrossRefPubMedGoogle Scholar
  19. Kaplan, D. and Cooke, T. (1997). Fundamental concepts in the embryogenesis of dicotyledons: A morphological interpretation of embryo mutants . Plant Cell9, 1903–1919.CrossRefPubMedGoogle Scholar
  20. Kerstetter, R. A., Laudencia-Chingcuanco, D., Smith, L. G. and Hake, S. (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development124, 3045–3054.PubMedGoogle Scholar
  21. Kessler, S., Townsley, B. and Sinha, N. (2006). L1 division and differentiation patterns influence shoot apical meristem maintenance . Plant Physiol.141, 1349–1362.CrossRefPubMedGoogle Scholar
  22. Kim, J. Y., Yuan, Z., Cilia, M., Khalfan-Jagani, Z. and Jackson, D. (2002). Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc. Natl. Acad. Sci.99, 4103–4108.CrossRefPubMedGoogle Scholar
  23. Kim, J. Y., Yuan, Z. and Jackson, D. (2003). Developmental regulation and significance of KNOX protein trafficking in Arabidopsis . Development130, 4351–4362.CrossRefPubMedGoogle Scholar
  24. Ledin, R. (1954). The vegetative shoot apex of Zea mays. Am. J. Bot.41, 11–17.CrossRefGoogle Scholar
  25. Long, J. A., Moan, E. I., Medford, J. I. and Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis . Nature379, 66–69.CrossRefPubMedGoogle Scholar
  26. Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. and Hake, S. (1995) . Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science270, 1980–1983.CrossRefPubMedGoogle Scholar
  27. Mayer, K. F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem . Cell95, 805–815.CrossRefPubMedGoogle Scholar
  28. McConnell, J. R. and Barton, M. K. (1998). Leaf polarity and meristem formation in Arabidopsis. Development125, 2935–2942.PubMedGoogle Scholar
  29. McDaniel, C. N. and Poethig, R. S. (1988). Cell lineage patterns in the shoot apical meristem of the germinating maize embryo . Planta175, 13–22.CrossRefGoogle Scholar
  30. McSteen, P., Malcomber, S., Skirpan, A., Lunde, C., Wu, X., Kellogg, E. and Hake, S. (2007). Barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize . Plant Physiol.144, 1000–1011.CrossRefPubMedGoogle Scholar
  31. Nagasaki, H., Itoh, J., Hayashi, K., Hibara, K., Satoh-Nagasawa, N., Nosaka, M., Mukouhata, M., Ashikari, M., Kitano, H., Matsuoka, M. (2007). The small interfering RNA production pathway is required for shoot meristem initiation in rice . Proc. Natl. Acad. Sci.104, 14867–14871.CrossRefPubMedGoogle Scholar
  32. Nardmann, J. and Werr, W. (2006). The shoot stem cell niche in angiosperms: Expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol. Biol. Evol.23, 2492–2504.CrossRefPubMedGoogle Scholar
  33. Ohtsu, K., Smith, M. B., Emrich, S. J., Borsuk, L. A., Zhou, R., Chen, T., Zhang, X., Timmermans, M. C., Beck, J., Buckner, B. (2007). Global gene expression analysis of the shoot apical mer-istem of maize . Plant J.52, 391–404.CrossRefPubMedGoogle Scholar
  34. Ori, N., Juarez, M. T., Jackson, D., Yamaguchi, J., Banowetz, G. M. and Hake, S. (1999). Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter . Plant Cell11, 1073–1080.CrossRefPubMedGoogle Scholar
  35. Pilu, R., Consonni, G., Busti, E., MacCabe, A. P., Giulini, A., Dolfini, S. and Gavazzi, G. (2002). Mutations in two independent genes lead to suppression of the shoot apical meristem in maize . Plant Physiol.128, 502–511.CrossRefPubMedGoogle Scholar
  36. Poethig, R. S., Coe, E. H. and Johri, M. M. (1986). Cell lineage patterns in maize embryogenesis: A clonal analysis . Dev. Biol.117, 392–404.CrossRefGoogle Scholar
  37. Randolph, L. F. (1936). Developmental morphology of the maize caryopsis. J. Agric. Res.53, 881–916.Google Scholar
  38. Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs . Plant Cell12, 507–518.CrossRefPubMedGoogle Scholar
  39. Reinhardt, D., Pesce, E. R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J. and Kuhlemeier , C. (2003) . Regulation of phyllotaxis by polar auxin transport . Nature426, 255–260.CrossRefPubMedGoogle Scholar
  40. Rivin, C., Sollinger, J., Strom, D. and Hardeman, K. (1995). Genetics and morphogenesis of dks8, a shootless mutant of maize. J. Cell Biochem. 459.Google Scholar
  41. Ruiz-Medrano, R., Xoconostle-Cazares, B. and Kragler, F. (2004). The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses . Curr. Opin. Plant Biol. 7, 641–650.CrossRefPubMedGoogle Scholar
  42. Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S. and Matsuoka, M. (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem . Genes Dev. 15, 581–590.CrossRefPubMedGoogle Scholar
  43. Sakamoto, T., Sakakibara, H., Kojima, M., Yamamoto, Y., Nagasaki, H., Inukai, Y., Sato, Y. and Matsuoka, M. (2006). Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice . Plant Physiol. 142, 54–62.CrossRefPubMedGoogle Scholar
  44. Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. (1999). Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants . EMBO J. 18, 992–1002.CrossRefPubMedGoogle Scholar
  45. Satoh, N., Itoh, J. and Nagato, Y. (2003). The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells . Genetics 164, 335–346.PubMedGoogle Scholar
  46. Sharman, B. C. (1942). Developmental anatomy of the shoot of Zea Mays L. Ann. Bot. 22, 245–282.Google Scholar
  47. Smith, L. G., Greene, B., Veit, B. and Hake, S. (1992). A dominant mutation in the maize home-obox gene, Knotted-1 , causes its ectopic expression in leaf cells with altered fates . Development 116, 21–30.PubMedGoogle Scholar
  48. Steeves, T. A. and Sussex, I. M. (1989). Patterns in Plant Development. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Sussex, I. M. (1989). Developmental programming of the shoot meristem. Cell 56, 225–229.CrossRefPubMedGoogle Scholar
  50. Taguchi-Shiobara, F., Yuan, Z., Hake, S. and Jackson, D. (2001). The FASCIATED EAR2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15, 2755–2766.CrossRefPubMedGoogle Scholar
  51. Vega, S. H., Sauer, M., Orkwiszewski, J. A. and Poethig, R. S. (2002). The early phase change gene in maize . Plant Cell 14, 133–147.CrossRefPubMedGoogle Scholar
  52. Veit, B., Briggs, S. P., Schmidt, R. J., Yanofsky, M. F. and Hake, S. (1998). Regulation of leaf initiation by the terminal ear 1 gene of maize . Nature 393, 166–168.CrossRefPubMedGoogle Scholar
  53. Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family . Nature 350, 241–243.CrossRefPubMedGoogle Scholar
  54. Vollbrecht, E., Reiser, L. and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1 . Development 127, 3161–3172.PubMedGoogle Scholar
  55. Williams, L. and Fletcher, J. C. (2005). Stem cell regulation in the Arabidopsis shoot apical mer-istem. Curr. Opin. Plant Biol. 8, 582–586.CrossRefPubMedGoogle Scholar
  56. Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A. and Ori, N. (2005). Arabidopsis KNOX proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566–1571.CrossRefPubMedGoogle Scholar
  57. Zhang, X., Madi, S., Borsuk, L., Nettleton, D., Elshire, R. J., Buckner, B., Janick-Buckner, D., Beck, J., Timmermans, M., Schnable, P. S. (2007). Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem . PLoS Genet. 3, e101.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dave Jackson

There are no affiliations available

Personalised recommendations