Skip to main content

The Role of Shock-Induced Nonregenerative Depolarizations in Ventricular Fibrillation and Defibrillation: The Graded Response Hypothesis

  • Chapter
Cardiac Bioelectric Therapy
  • 1227 Accesses

The link between death and cardiac arrest was perhaps first recorded in the epic of Gilgamesh, the “oldest” written story on Earth (circa 2700 BC). “I touched his heart, but it beat no longer,” lamented Gilgamesh, the Babylonian hero-king in the Mesopotamian epic of Gilgamesh, as he witnessed the death of his best friend, Enkidu.1 Perhaps the earliest pictorial and informative description of the sudden cardiac death was discovered on the relief sculpture of the tomb of an Egyptian nobleman in the sixth dynasty (2625— 2475 BC) at Sakkara. The scene, titled “Sudden Death” by the German egyptologist von Bissing, is described by a sequence of pictorial events that lead to the sudden collapse of the Egyptian nobleman2 (Fig. 1). The later discovery of Egyptian writings on papyri (circa 1534 BC) directly linked heart beat irregularities to death: “If the heart trembles, has little power and sinks, the disease is advancing … and death is near.”3 Heartbeat irregularities as a marker of disease were also recognized and described in ancient China as can be deduced from a conversation between the “Golden Emperor” Huang Ti and his physician Ch'i Pai (circa 2600 BC) “When the pulse beats are long the constitution of the pulse is well regulated. … When the pulse is quick, and contain six beats to 1 cycle of respiration, it indicates heart trouble … and the disease becomes grave.”4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Epic of Gilgamesh (Table VIII). Available at URL: http://www.ancienttexts.org/ library/msopotamian/gilgamesh/tab8.htm. Accessed February 22, 2007

  2. Bruetsch WL. The earliest record of sudden death possibly due to atherosclerotic coronary occlusion. Circulation 1959;20:438–441

    PubMed  CAS  Google Scholar 

  3. Breasted JH. The Edwin Smith Surgical Papyrus. Chicago: University of Chicago Press; 1930

    Google Scholar 

  4. Veith I (Trans). The Yellow Emperor's Classic of Internal Medicine. Berkeley: University of California Press; 1972

    Google Scholar 

  5. Kane K, Taub, A. A history of local electric analgesia. Pain 1975;1:125–138

    Article  PubMed  CAS  Google Scholar 

  6. Driscol TE, Ratnoff ODNOF. The remarkable Dr. Abildgaard and countershock. The bicentennial of his electrical experiments on animals. Ann Int Med 1975;83: 878–882

    PubMed  CAS  Google Scholar 

  7. Hoffa A, Ludwig C. Einnige neue Versuche uber Herzewegung. Zeitschrift Rationelle Medizin 1850;9:107–144

    Google Scholar 

  8. Ludwig C. Über die Herznerven des Frosches. Arch Anat Physiol 1848;139

    Google Scholar 

  9. MacWilliam JA. Fibrillar contraction of the heart. J Physiol 1887;8:296–310

    Google Scholar 

  10. Battelli F. Le mécanisme de la mort par les courants électriques chez l'homme. Rev Méd Suisse Romande 1899;19:605–618

    Google Scholar 

  11. Mines GR. On circulating excitation in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 1914;4:43–53

    Google Scholar 

  12. Mines GR. On dynamic equilibrium in the heart. J Physiol (Lond) 1913;46:349–383

    CAS  Google Scholar 

  13. Garrey WE. The nature of fibrillatory contraction of the heart-its relation to tissue mass and form. Am J Physiol 1914;33:397–414

    Google Scholar 

  14. Lewis T. Mechanism and Graphic Registration of the Heart Beat, 3rd ed. Chicago: Chicago Book; 1924

    Google Scholar 

  15. Brams WA, Katz LN. The nature of experimental flutter and fibrillation of the heart. Am Heart J 1931;7:249–261

    Article  Google Scholar 

  16. Wiggers CJ, Bell JR, Paine M. Studies of ventricular fibrillation caused by electric shock. II. Cinematographic and electrocardiographic observation of the natural process in the dog's heart. Its inhibition by potassium and the revival of coordinated beats by calcium. Am Heart J 1930;5:351–365

    Article  Google Scholar 

  17. King BG. The Effect of Electric Shock on Heart Action with Special Reference to Varying Susceptibility in Different Parts of the Cardiac Cycle (Ph.D. thesis). New York: Aberdeen Press, Columbia University; 1934

    Google Scholar 

  18. Ferris LP, King BG, Spence PW, Williams HB. Effect of electric shock on the heart. Electrical Eng 1936;55:498–515

    Google Scholar 

  19. Fabiato PA, Coumel P, Gourgon R, Saumont R. Le seuil de résponse synchrone des fibres myocardiques. Application à la comparaison expérimentale de l'efficacité des différentes formes de chocs électriques de défibrillation. Arch Mal Coeur Vaiss 1967;60:527–544

    PubMed  CAS  Google Scholar 

  20. Jones JL, Jones RE. Improved defibrillator waveform safety factor with biphasic waveforms. Am J Physiol 1983;245:H60–H65

    PubMed  CAS  Google Scholar 

  21. Dixon EG, Tang ASL, Wolf PD, Meador JT, Fine MJ, Calfee RV, Ideker RE. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. Circulation 1987;76:1176–1184

    PubMed  CAS  Google Scholar 

  22. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001;293(5531):864–867

    Article  PubMed  CAS  Google Scholar 

  23. Block M, Hammel D, Isbruch F, Borggrefe M, Wietholt D, Hachenberg T, Scheld HH, Breithardt G. Results and realistic expectations with transvenous lead systems. PACE 1992;15:665–670

    PubMed  CAS  Google Scholar 

  24. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 1998;82:918–925

    PubMed  CAS  Google Scholar 

  25. Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova N. Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart Circ Physiol 2000;279(3):H1055–H1070

    PubMed  CAS  Google Scholar 

  26. Hildebrandt MC, Roth BJ. Simulation of protective zones during quatrefoil reentry in cardiac tissue. J Cardiovasc Electrophysiol 2001;12(9):1062–1067

    Article  PubMed  CAS  Google Scholar 

  27. Trayanova N. Defibrillation of the heart: insights into mechanisms from modelling studies. Exp Physiol 2006;91:323–337

    Article  PubMed  Google Scholar 

  28. Hwang C, Swerdlow CD, Kass RM, Gang ES, Mandel WJ, Peter CT, Chen P-S. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation 1994;90(5):2308–2314

    PubMed  CAS  Google Scholar 

  29. Wiggers CJ, Wegria R. Ventricular fibrillation due to single, localized induction and condenser shocks applied during the vulnerable phase of ventricular systole. Am J Physiol 1940;128:500–505

    Google Scholar 

  30. Chen P-S, Wolf PD, Dixon EG, Danieley ND, Frazier DW, Smith WM, Ideker RE. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res 1988;62:1191–1209

    PubMed  CAS  Google Scholar 

  31. Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE. Stimulus-induced critical point: mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest 1989;83:1039–1052

    Article  PubMed  CAS  Google Scholar 

  32. Bonometti C, Hwang C, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, Chen P-S. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res 1995;77:407–416

    PubMed  CAS  Google Scholar 

  33. Chen P-S, Cha Y-M, Peters BB, Chen LS. Effects of myocardial fiber orientation on the electrical induction of ventricular fibrillation. Am J Physiol 1993;264:H1760–H1773

    PubMed  CAS  Google Scholar 

  34. Van Dam RT, Moore NE, Hoffman BF. Initiation and conduction of impulses in partially depolarized cardiac fibers. Am J Physiol 1963;204:1133–1144

    Google Scholar 

  35. Schuder JC, Rahmoeller GA, Stoeckle H. Transthoracic ventricular defibrillation with triangular and trapezoidal waveforms. Circ Res 1966;19:689–694

    Google Scholar 

  36. Yashima M, Kim Y-H, Armin S, Wu T-J, Miyauchi Y, Mandel WJ, Chen P-S, Karagueuzian HS. On the mechanism of the probabilistic nature of ventricular defibrillation threshold. Am J Physiol Heart Circ Physiol 2003;284(1):H249–H255

    PubMed  CAS  Google Scholar 

  37. Hamzei A, Ohara T, Kim Y-H, Lee M-H, Voroshilovsky O, Lin S-F, Weiss JN, Chen P-S, Karagueuzian HS. The role of approximate entropy in predicting ventricular defibrillation threshold. J Cardiovasc Pharmacol Ther 2002;7(1):45–52

    Article  PubMed  Google Scholar 

  38. Chen P-S, Shibata N, Dixon EG, Wolf PD, Danieley ND, Sweeney MB, Smith WM, Ideker RE. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest 1986;77(3):810–823

    Article  PubMed  CAS  Google Scholar 

  39. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen P-S. Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 1999;99:2819–2826

    PubMed  CAS  Google Scholar 

  40. Weiss JN, Chen P-S, Qu Z, Karagueuzian HS, Garfinkel A. Ventricular fibrillation: how do we stop the waves from breaking? Circ Res 2000;87:1103–1107

    PubMed  CAS  Google Scholar 

  41. Knisley SB, Hill BC, Ideker RE. Virtual electrode effects in myocardial fibers. Biophys J 1994;66:719–728

    PubMed  CAS  Google Scholar 

  42. Wikswo JP Jr, Wisialowski TA, Altemeier WA, Balser JR, Kopelman HA, Roden DM. Virtual cathode effects during stimulation of cardiac muscle. Two-dimensional in vivo experiments. Circ Res 1991;68:513–530

    PubMed  Google Scholar 

  43. Chen P-S, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73(5):1022– 1028

    PubMed  CAS  Google Scholar 

  44. Chen P-S, Swerdlow CD, Hwang C, Karagueuzian HS. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol 1998;9:553–562

    Article  PubMed  CAS  Google Scholar 

  45. Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res 1999;85:742–752

    PubMed  CAS  Google Scholar 

  46. Knisley SB, Smith WM, Ideker RE. Effect of field stimulation on cellular repolarization in rabbit myocardium. Implication for reentry induction. Circ Res 1992;70:707–715

    PubMed  CAS  Google Scholar 

  47. Winfree AT. Electrical instability in cardiac muscle: phase singularities and rotors. J Theor Biol 1989;138(3):353–405

    Article  PubMed  CAS  Google Scholar 

  48. Witkowski FX, Penkoske PA, Plonsey R. Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC-coupled simultaneous activation and shock potential recordings. Circulation 1990;82(1):244–260

    PubMed  CAS  Google Scholar 

  49. Zipes DP, Fischer J, King RM, Nicoll AD, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 1975;36:37–44

    Article  PubMed  CAS  Google Scholar 

  50. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 1998;9:529–552

    Article  PubMed  CAS  Google Scholar 

  51. Kwaku KF, Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. Circ Res 1996;79:957–973

    PubMed  CAS  Google Scholar 

  52. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrodeinduced reexcitation: a mechanism of defibrillation. Circ Res 1999;85:1056–1066

    PubMed  CAS  Google Scholar 

  53. Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res 1993;72: 145–160

    PubMed  CAS  Google Scholar 

  54. Gotoh M, Uchida T, Mandel WJ, Fishbein MC, Chen P-S, Karagueuzian HS. Cellular graded responses and ventricular vulnerability to reentry by a premature stimulus in isolated canine ventricle. Circulation 1997;95:2141–2154

    PubMed  CAS  Google Scholar 

  55. Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential. Chaos 1998;8:204–220

    Article  PubMed  Google Scholar 

  56. Lindblom AE, Roth BJ, Trayanova NA. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited. J Cardiovasc Electrophysiol 2000;11:274–285

    Article  PubMed  CAS  Google Scholar 

  57. Wang NC, Lee M-H, Ohara T, Okuyama Y, Fishbein GA, Lin S-F, Karagueuzian HS, Chen P-S. Optical mapping of ventricular defibrillation in isolated swine right ventricles: demonstration of a postshock isoelectric window after near-threshold defibrillation shocks. Circulation 2001;104(2):227–233

    Article  PubMed  CAS  Google Scholar 

  58. Chen P-S, Wolf PD, Claydon FJ, Dixon EG, Vidaillet HJ Jr, Danieley ND, Pilkington TC, Ideker RE. The potential gradient field created by epicardial defibrillation electrodes in dogs. Circulation 1986;74(3):626–636

    PubMed  CAS  Google Scholar 

  59. Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195–2210

    Article  PubMed  CAS  Google Scholar 

  60. Nikolski V, Efimov IR. Virtual electrode polarization of ventricular epicardium during bipolar stimulation. J Cardiovasc Electrophysiol 2000;11:605

    Article  PubMed  CAS  Google Scholar 

  61. Kao CY, Hoffman BF. Graded and decremental response in heart muscle fibers. Am J Physiol 1958;194:187–196

    PubMed  CAS  Google Scholar 

  62. Weidmann S. Effects of current flow on the membrane potential of cardiac muscle. J Physiol 1951;115:227–236

    PubMed  CAS  Google Scholar 

  63. Karagueuzian HS, Katzung BG. Relative inotropic and arrhythmogenic effects of five cardiac steroids in ventricular myocardium: oscillatory afterpotentials and the role of endogenous catecholamines. J Pharmacol Exp Ther 1981;218:348–356

    PubMed  CAS  Google Scholar 

  64. Karagueuzian HS, Katzung BG. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. J Physiol 1982;327:255–271

    PubMed  CAS  Google Scholar 

  65. Jones JL, Lepeschkin E, Jones RE, Rush S. Response of cultured myocardial cells to countershock-type electric field stimulation. Am J Physiol 1978;235(2):H214–H222

    PubMed  CAS  Google Scholar 

  66. Li HG, Jones DL, Yee R, Klein GJ. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia. J Am Coll Cardiol 1993;22(2): 607–614

    Article  PubMed  CAS  Google Scholar 

  67. Cao J-M, Qu Z, Kim Y-H, Wu T-J, Garfinkel A, Weiss JN, Karagueuzian HS, Chen P-S. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circ Res 1999;84:1318–1331

    PubMed  CAS  Google Scholar 

  68. MacLeod DP, Hunter EG. The pharmacology of the cardiac muscle of the great veins of the rat. Can J Physiol Pharmacol 1967;45(3):463–473

    PubMed  CAS  Google Scholar 

  69. Swerdlow CD, Kass RM, O'Connor ME, Chen P-S. Effect of shock waveform on relationship between upper limit of vulnerability and defibrillation threshold. J Cardiovasc Electrophysiol 1998;9:339–349

    Article  PubMed  CAS  Google Scholar 

  70. Walcott GP, Walker RG, Cates AW, Krassowska W, Smith WM, Ideker RE. Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. J Car-diovasc Electrophysiol 1995;6:737–750

    Article  CAS  Google Scholar 

  71. Jones DL, Narayanan N. Defibrillation depresses heart sarcoplasmic reticulum calcium pump: a mechanism of postshock dysfunction 1. Am J Physiol 1998;274(1 Pt 2):H98– H105

    PubMed  CAS  Google Scholar 

  72. Eisner DA, Diaz ME, Li Y, O'Neill SC, Trafford AW. Stability and instability of regulation of intracellular calcium. Exp Physiol 2005;90(1):3–12

    Article  PubMed  CAS  Google Scholar 

  73. Schlotthauer K, Bers DM. Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 2000;87(9):774–780

    PubMed  CAS  Google Scholar 

  74. Uchida T, Yashima M, Gotoh M, Qu Z, Garfinkel A, Weiss JN, Fishbein MC, Mandel WJ, Chen P-S, Karagueuzian HS. Mechanism of acceleration of functional reentry in the ventricle: effects of ATP-sensitive potassium channel opener. Circulation 1999;99:704–712

    PubMed  CAS  Google Scholar 

  75. Mandapati R, Asano Y, Baxter WT, Gray R, Davidenko J, Jalife J. Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart. Circulation 1998;98:1688–1696

    PubMed  CAS  Google Scholar 

  76. Omichi C, Lamp ST, Lin SF, Yang J, Baher A, Zhou S, Attin M, Lee MH, Karagueuzian HS, Kogan B, Qu Z, Garfinkel A, Chen PS, Weiss JN. Intracellular Ca dynamics in ventricular fibrillation. Am J Physiol Heart Circ Physiol 2004;286:H1836–H1844

    Article  PubMed  CAS  Google Scholar 

  77. Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 2004;94(8):1083–1090

    Article  PubMed  CAS  Google Scholar 

  78. choi BR, Burton F, Salama G. Cytosolic Ca2+triggers early after depolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol 2002;543(Pt 2):615–631

    Article  PubMed  CAS  Google Scholar 

  79. Chudin E, Garfinkel A, Weiss J, Karplus W, Kogan B. Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study). Prog Biophys Mol Biol 1998;69:225–236

    Article  PubMed  CAS  Google Scholar 

  80. Hwang GS, Hayashi H, Tang L, Ogawa M, Hernandez H, Tan AY, Karagueuzian HS, Weiss JN, Lin SF, Chen PS. Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles. Circulation 2006;114:2595–2603

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Karagueuzian, H.S. (2009). The Role of Shock-Induced Nonregenerative Depolarizations in Ventricular Fibrillation and Defibrillation: The Graded Response Hypothesis. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics