The Role of Shock-Induced Nonregenerative Depolarizations in Ventricular Fibrillation and Defibrillation: The Graded Response Hypothesis

  • Hrayr S. Karagueuzian

The link between death and cardiac arrest was perhaps first recorded in the epic of Gilgamesh, the “oldest” written story on Earth (circa 2700 BC). “I touched his heart, but it beat no longer,” lamented Gilgamesh, the Babylonian hero-king in the Mesopotamian epic of Gilgamesh, as he witnessed the death of his best friend, Enkidu.1 Perhaps the earliest pictorial and informative description of the sudden cardiac death was discovered on the relief sculpture of the tomb of an Egyptian nobleman in the sixth dynasty (2625— 2475 BC) at Sakkara. The scene, titled “Sudden Death” by the German egyptologist von Bissing, is described by a sequence of pictorial events that lead to the sudden collapse of the Egyptian nobleman2 (Fig. 1). The later discovery of Egyptian writings on papyri (circa 1534 BC) directly linked heart beat irregularities to death: “If the heart trembles, has little power and sinks, the disease is advancing … and death is near.”3 Heartbeat irregularities as a marker of disease were also recognized and described in ancient China as can be deduced from a conversation between the “Golden Emperor” Huang Ti and his physician Ch'i Pai (circa 2600 BC) “When the pulse beats are long the constitution of the pulse is well regulated. … When the pulse is quick, and contain six beats to 1 cycle of respiration, it indicates heart trouble … and the disease becomes grave.”4


Action Potential Duration Phase Singularity Coupling Interval Grade Response Wave Front Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Epic of Gilgamesh (Table VIII). Available at URL: library/msopotamian/gilgamesh/tab8.htm. Accessed February 22, 2007
  2. 2.
    Bruetsch WL. The earliest record of sudden death possibly due to atherosclerotic coronary occlusion. Circulation 1959;20:438–441PubMedGoogle Scholar
  3. 3.
    Breasted JH. The Edwin Smith Surgical Papyrus. Chicago: University of Chicago Press; 1930Google Scholar
  4. 4.
    Veith I (Trans). The Yellow Emperor's Classic of Internal Medicine. Berkeley: University of California Press; 1972Google Scholar
  5. 5.
    Kane K, Taub, A. A history of local electric analgesia. Pain 1975;1:125–138PubMedCrossRefGoogle Scholar
  6. 6.
    Driscol TE, Ratnoff ODNOF. The remarkable Dr. Abildgaard and countershock. The bicentennial of his electrical experiments on animals. Ann Int Med 1975;83: 878–882PubMedGoogle Scholar
  7. 7.
    Hoffa A, Ludwig C. Einnige neue Versuche uber Herzewegung. Zeitschrift Rationelle Medizin 1850;9:107–144Google Scholar
  8. 8.
    Ludwig C. Über die Herznerven des Frosches. Arch Anat Physiol 1848;139Google Scholar
  9. 9.
    MacWilliam JA. Fibrillar contraction of the heart. J Physiol 1887;8:296–310Google Scholar
  10. 10.
    Battelli F. Le mécanisme de la mort par les courants électriques chez l'homme. Rev Méd Suisse Romande 1899;19:605–618Google Scholar
  11. 11.
    Mines GR. On circulating excitation in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 1914;4:43–53Google Scholar
  12. 12.
    Mines GR. On dynamic equilibrium in the heart. J Physiol (Lond) 1913;46:349–383Google Scholar
  13. 13.
    Garrey WE. The nature of fibrillatory contraction of the heart-its relation to tissue mass and form. Am J Physiol 1914;33:397–414Google Scholar
  14. 14.
    Lewis T. Mechanism and Graphic Registration of the Heart Beat, 3rd ed. Chicago: Chicago Book; 1924Google Scholar
  15. 15.
    Brams WA, Katz LN. The nature of experimental flutter and fibrillation of the heart. Am Heart J 1931;7:249–261CrossRefGoogle Scholar
  16. 16.
    Wiggers CJ, Bell JR, Paine M. Studies of ventricular fibrillation caused by electric shock. II. Cinematographic and electrocardiographic observation of the natural process in the dog's heart. Its inhibition by potassium and the revival of coordinated beats by calcium. Am Heart J 1930;5:351–365CrossRefGoogle Scholar
  17. 17.
    King BG. The Effect of Electric Shock on Heart Action with Special Reference to Varying Susceptibility in Different Parts of the Cardiac Cycle (Ph.D. thesis). New York: Aberdeen Press, Columbia University; 1934Google Scholar
  18. 18.
    Ferris LP, King BG, Spence PW, Williams HB. Effect of electric shock on the heart. Electrical Eng 1936;55:498–515Google Scholar
  19. 19.
    Fabiato PA, Coumel P, Gourgon R, Saumont R. Le seuil de résponse synchrone des fibres myocardiques. Application à la comparaison expérimentale de l'efficacité des différentes formes de chocs électriques de défibrillation. Arch Mal Coeur Vaiss 1967;60:527–544PubMedGoogle Scholar
  20. 20.
    Jones JL, Jones RE. Improved defibrillator waveform safety factor with biphasic waveforms. Am J Physiol 1983;245:H60–H65PubMedGoogle Scholar
  21. 21.
    Dixon EG, Tang ASL, Wolf PD, Meador JT, Fine MJ, Calfee RV, Ideker RE. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. Circulation 1987;76:1176–1184PubMedGoogle Scholar
  22. 22.
    Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001;293(5531):864–867PubMedCrossRefGoogle Scholar
  23. 23.
    Block M, Hammel D, Isbruch F, Borggrefe M, Wietholt D, Hachenberg T, Scheld HH, Breithardt G. Results and realistic expectations with transvenous lead systems. PACE 1992;15:665–670PubMedGoogle Scholar
  24. 24.
    Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 1998;82:918–925PubMedGoogle Scholar
  25. 25.
    Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova N. Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart Circ Physiol 2000;279(3):H1055–H1070PubMedGoogle Scholar
  26. 26.
    Hildebrandt MC, Roth BJ. Simulation of protective zones during quatrefoil reentry in cardiac tissue. J Cardiovasc Electrophysiol 2001;12(9):1062–1067PubMedCrossRefGoogle Scholar
  27. 27.
    Trayanova N. Defibrillation of the heart: insights into mechanisms from modelling studies. Exp Physiol 2006;91:323–337PubMedCrossRefGoogle Scholar
  28. 28.
    Hwang C, Swerdlow CD, Kass RM, Gang ES, Mandel WJ, Peter CT, Chen P-S. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation 1994;90(5):2308–2314PubMedGoogle Scholar
  29. 29.
    Wiggers CJ, Wegria R. Ventricular fibrillation due to single, localized induction and condenser shocks applied during the vulnerable phase of ventricular systole. Am J Physiol 1940;128:500–505Google Scholar
  30. 30.
    Chen P-S, Wolf PD, Dixon EG, Danieley ND, Frazier DW, Smith WM, Ideker RE. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res 1988;62:1191–1209PubMedGoogle Scholar
  31. 31.
    Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE. Stimulus-induced critical point: mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest 1989;83:1039–1052PubMedCrossRefGoogle Scholar
  32. 32.
    Bonometti C, Hwang C, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, Chen P-S. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res 1995;77:407–416PubMedGoogle Scholar
  33. 33.
    Chen P-S, Cha Y-M, Peters BB, Chen LS. Effects of myocardial fiber orientation on the electrical induction of ventricular fibrillation. Am J Physiol 1993;264:H1760–H1773PubMedGoogle Scholar
  34. 34.
    Van Dam RT, Moore NE, Hoffman BF. Initiation and conduction of impulses in partially depolarized cardiac fibers. Am J Physiol 1963;204:1133–1144Google Scholar
  35. 35.
    Schuder JC, Rahmoeller GA, Stoeckle H. Transthoracic ventricular defibrillation with triangular and trapezoidal waveforms. Circ Res 1966;19:689–694Google Scholar
  36. 36.
    Yashima M, Kim Y-H, Armin S, Wu T-J, Miyauchi Y, Mandel WJ, Chen P-S, Karagueuzian HS. On the mechanism of the probabilistic nature of ventricular defibrillation threshold. Am J Physiol Heart Circ Physiol 2003;284(1):H249–H255PubMedGoogle Scholar
  37. 37.
    Hamzei A, Ohara T, Kim Y-H, Lee M-H, Voroshilovsky O, Lin S-F, Weiss JN, Chen P-S, Karagueuzian HS. The role of approximate entropy in predicting ventricular defibrillation threshold. J Cardiovasc Pharmacol Ther 2002;7(1):45–52PubMedCrossRefGoogle Scholar
  38. 38.
    Chen P-S, Shibata N, Dixon EG, Wolf PD, Danieley ND, Sweeney MB, Smith WM, Ideker RE. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest 1986;77(3):810–823PubMedCrossRefGoogle Scholar
  39. 39.
    Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen P-S. Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 1999;99:2819–2826PubMedGoogle Scholar
  40. 40.
    Weiss JN, Chen P-S, Qu Z, Karagueuzian HS, Garfinkel A. Ventricular fibrillation: how do we stop the waves from breaking? Circ Res 2000;87:1103–1107PubMedGoogle Scholar
  41. 41.
    Knisley SB, Hill BC, Ideker RE. Virtual electrode effects in myocardial fibers. Biophys J 1994;66:719–728PubMedGoogle Scholar
  42. 42.
    Wikswo JP Jr, Wisialowski TA, Altemeier WA, Balser JR, Kopelman HA, Roden DM. Virtual cathode effects during stimulation of cardiac muscle. Two-dimensional in vivo experiments. Circ Res 1991;68:513–530PubMedGoogle Scholar
  43. 43.
    Chen P-S, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73(5):1022– 1028PubMedGoogle Scholar
  44. 44.
    Chen P-S, Swerdlow CD, Hwang C, Karagueuzian HS. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol 1998;9:553–562PubMedCrossRefGoogle Scholar
  45. 45.
    Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res 1999;85:742–752PubMedGoogle Scholar
  46. 46.
    Knisley SB, Smith WM, Ideker RE. Effect of field stimulation on cellular repolarization in rabbit myocardium. Implication for reentry induction. Circ Res 1992;70:707–715PubMedGoogle Scholar
  47. 47.
    Winfree AT. Electrical instability in cardiac muscle: phase singularities and rotors. J Theor Biol 1989;138(3):353–405PubMedCrossRefGoogle Scholar
  48. 48.
    Witkowski FX, Penkoske PA, Plonsey R. Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC-coupled simultaneous activation and shock potential recordings. Circulation 1990;82(1):244–260PubMedGoogle Scholar
  49. 49.
    Zipes DP, Fischer J, King RM, Nicoll AD, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 1975;36:37–44PubMedCrossRefGoogle Scholar
  50. 50.
    Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 1998;9:529–552PubMedCrossRefGoogle Scholar
  51. 51.
    Kwaku KF, Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. Circ Res 1996;79:957–973PubMedGoogle Scholar
  52. 52.
    Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrodeinduced reexcitation: a mechanism of defibrillation. Circ Res 1999;85:1056–1066PubMedGoogle Scholar
  53. 53.
    Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res 1993;72: 145–160PubMedGoogle Scholar
  54. 54.
    Gotoh M, Uchida T, Mandel WJ, Fishbein MC, Chen P-S, Karagueuzian HS. Cellular graded responses and ventricular vulnerability to reentry by a premature stimulus in isolated canine ventricle. Circulation 1997;95:2141–2154PubMedGoogle Scholar
  55. 55.
    Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential. Chaos 1998;8:204–220PubMedCrossRefGoogle Scholar
  56. 56.
    Lindblom AE, Roth BJ, Trayanova NA. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited. J Cardiovasc Electrophysiol 2000;11:274–285PubMedCrossRefGoogle Scholar
  57. 57.
    Wang NC, Lee M-H, Ohara T, Okuyama Y, Fishbein GA, Lin S-F, Karagueuzian HS, Chen P-S. Optical mapping of ventricular defibrillation in isolated swine right ventricles: demonstration of a postshock isoelectric window after near-threshold defibrillation shocks. Circulation 2001;104(2):227–233PubMedCrossRefGoogle Scholar
  58. 58.
    Chen P-S, Wolf PD, Claydon FJ, Dixon EG, Vidaillet HJ Jr, Danieley ND, Pilkington TC, Ideker RE. The potential gradient field created by epicardial defibrillation electrodes in dogs. Circulation 1986;74(3):626–636PubMedGoogle Scholar
  59. 59.
    Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195–2210PubMedCrossRefGoogle Scholar
  60. 60.
    Nikolski V, Efimov IR. Virtual electrode polarization of ventricular epicardium during bipolar stimulation. J Cardiovasc Electrophysiol 2000;11:605PubMedCrossRefGoogle Scholar
  61. 61.
    Kao CY, Hoffman BF. Graded and decremental response in heart muscle fibers. Am J Physiol 1958;194:187–196PubMedGoogle Scholar
  62. 62.
    Weidmann S. Effects of current flow on the membrane potential of cardiac muscle. J Physiol 1951;115:227–236PubMedGoogle Scholar
  63. 63.
    Karagueuzian HS, Katzung BG. Relative inotropic and arrhythmogenic effects of five cardiac steroids in ventricular myocardium: oscillatory afterpotentials and the role of endogenous catecholamines. J Pharmacol Exp Ther 1981;218:348–356PubMedGoogle Scholar
  64. 64.
    Karagueuzian HS, Katzung BG. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. J Physiol 1982;327:255–271PubMedGoogle Scholar
  65. 65.
    Jones JL, Lepeschkin E, Jones RE, Rush S. Response of cultured myocardial cells to countershock-type electric field stimulation. Am J Physiol 1978;235(2):H214–H222PubMedGoogle Scholar
  66. 66.
    Li HG, Jones DL, Yee R, Klein GJ. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia. J Am Coll Cardiol 1993;22(2): 607–614PubMedCrossRefGoogle Scholar
  67. 67.
    Cao J-M, Qu Z, Kim Y-H, Wu T-J, Garfinkel A, Weiss JN, Karagueuzian HS, Chen P-S. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circ Res 1999;84:1318–1331PubMedGoogle Scholar
  68. 68.
    MacLeod DP, Hunter EG. The pharmacology of the cardiac muscle of the great veins of the rat. Can J Physiol Pharmacol 1967;45(3):463–473PubMedGoogle Scholar
  69. 69.
    Swerdlow CD, Kass RM, O'Connor ME, Chen P-S. Effect of shock waveform on relationship between upper limit of vulnerability and defibrillation threshold. J Cardiovasc Electrophysiol 1998;9:339–349PubMedCrossRefGoogle Scholar
  70. 70.
    Walcott GP, Walker RG, Cates AW, Krassowska W, Smith WM, Ideker RE. Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. J Car-diovasc Electrophysiol 1995;6:737–750CrossRefGoogle Scholar
  71. 71.
    Jones DL, Narayanan N. Defibrillation depresses heart sarcoplasmic reticulum calcium pump: a mechanism of postshock dysfunction 1. Am J Physiol 1998;274(1 Pt 2):H98– H105PubMedGoogle Scholar
  72. 72.
    Eisner DA, Diaz ME, Li Y, O'Neill SC, Trafford AW. Stability and instability of regulation of intracellular calcium. Exp Physiol 2005;90(1):3–12PubMedCrossRefGoogle Scholar
  73. 73.
    Schlotthauer K, Bers DM. Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 2000;87(9):774–780PubMedGoogle Scholar
  74. 74.
    Uchida T, Yashima M, Gotoh M, Qu Z, Garfinkel A, Weiss JN, Fishbein MC, Mandel WJ, Chen P-S, Karagueuzian HS. Mechanism of acceleration of functional reentry in the ventricle: effects of ATP-sensitive potassium channel opener. Circulation 1999;99:704–712PubMedGoogle Scholar
  75. 75.
    Mandapati R, Asano Y, Baxter WT, Gray R, Davidenko J, Jalife J. Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart. Circulation 1998;98:1688–1696PubMedGoogle Scholar
  76. 76.
    Omichi C, Lamp ST, Lin SF, Yang J, Baher A, Zhou S, Attin M, Lee MH, Karagueuzian HS, Kogan B, Qu Z, Garfinkel A, Chen PS, Weiss JN. Intracellular Ca dynamics in ventricular fibrillation. Am J Physiol Heart Circ Physiol 2004;286:H1836–H1844PubMedCrossRefGoogle Scholar
  77. 77.
    Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 2004;94(8):1083–1090PubMedCrossRefGoogle Scholar
  78. 78.
    choi BR, Burton F, Salama G. Cytosolic Ca2+triggers early after depolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol 2002;543(Pt 2):615–631PubMedCrossRefGoogle Scholar
  79. 79.
    Chudin E, Garfinkel A, Weiss J, Karplus W, Kogan B. Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study). Prog Biophys Mol Biol 1998;69:225–236PubMedCrossRefGoogle Scholar
  80. 80.
    Hwang GS, Hayashi H, Tang L, Ogawa M, Hernandez H, Tan AY, Karagueuzian HS, Weiss JN, Lin SF, Chen PS. Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles. Circulation 2006;114:2595–2603PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Hrayr S. Karagueuzian
    • 1
  1. 1.Cardiovascular Research LaboratoriesDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations