Skip to main content

The Bidomain Theory of Pacing

  • Chapter
Cardiac Bioelectric Therapy

The implantable cardiac pacemaker is one of the most important medical innovations of the twentieth century.1 Yet until recently researchers have not understood the basic mechanisms governing how a pacemaker excites the heart. The development of a mathematical model describing the electrical properties of cardiac tissue — the bidomain model — helped unravel these mechanisms. This chapter outlines several important predictions of the bidomain model related to pacing. Several other chapters in this book examine related topics.

The bidomain model2,3 represents cardiac tissue as a multidimensional cable that can be represented by a network of resistors and capacitors. Figure 1 shows a network equivalent to the two-dimensional bidomain model. The lower grid of resistors represents the intracellular space, and the upper grid represents the extracellular space. The two spaces are coupled by resistors and capacitors representing the membrane. The electrical properties of cardiac muscle are markedly anisotropic; in Fig. 1 the resistors in the x direction may be different from the resistors in the y direction. Moreover, the degree of anisotropy differs within the intracellular and extracellular spaces. The ratio of conductivities in the x and y directions in the extracellular space is on the order of two, but in the intracellular space it is about ten, indicating the intracellular space is more anisotropic than the extracellular space.4 This condition of “unequal anisotropy ratios” leads to many of the interesting phenomena predicted by the bidomain model.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeffrey K. Machines in Our Hearts: The Cardiac Pacemaker, the Implantable Defibrillator, and American Health Care. Baltimore: Johns Hopkins University Press; 2001

    Google Scholar 

  2. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 1993;21:1–77

    PubMed  CAS  Google Scholar 

  3. Roth BJ. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol 1992;30:633–646

    Article  PubMed  CAS  Google Scholar 

  4. Roth BJ. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans Biomed Eng 1997;44:326–328

    Article  PubMed  CAS  Google Scholar 

  5. Roth BJ. How to explain why “unequal anisotropy ratios” is important using pictures but no mathematics. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 30–Sept. 3, 2006, New York

    Google Scholar 

  6. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J 1989;55:987–999

    PubMed  CAS  Google Scholar 

  7. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J 1995;68:2310–2322

    PubMed  CAS  Google Scholar 

  8. Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res 1995;77:1229–1239

    PubMed  CAS  Google Scholar 

  9. Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation. Biophys J 1995;69:2195–2210

    PubMed  CAS  Google Scholar 

  10. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng 1995;42:1174–1184

    Article  PubMed  CAS  Google Scholar 

  11. Roth BJ. Strength-interval curves for cardiac tissue predicted using the bidomain model. J Cardiovasc Electrophysiol 1996;7:722–737

    Article  PubMed  CAS  Google Scholar 

  12. Roth BJ. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J Cardiovasc Electrophysiol 1997;8:768–778

    Article  PubMed  CAS  Google Scholar 

  13. Goto M, Brooks C McC. Membrane excitability of the frog ventricle examined by long pulses. Am J Physiol 1969;217:1236–1245

    PubMed  CAS  Google Scholar 

  14. Dekker E. Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res 1970;27:811–823

    PubMed  CAS  Google Scholar 

  15. Lindemans FW, Heethaar RM, Denier van der Gon JJ, Zimmerman ANE. Site of initial excitation and current threshold as a function of electrode radius in heart muscle. Cardiovasc Res 1975;9:95–104

    Article  PubMed  CAS  Google Scholar 

  16. Lindemans FW, Denier van der Gon JJ. Current thresholds and liminal size in excitation of heart muscle. Cardiovasc Res 1978;12:477–485

    Article  PubMed  CAS  Google Scholar 

  17. Roth BJ. Artifacts, assumptions, and ambiguity: Pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation of the heart. Chaos 2002;12:973–981

    Article  PubMed  Google Scholar 

  18. van Dam RTh, Durrer D, Strackee J, van der Tweel LH. The excitability cycle of the dog's left ventricle determined by anodal, cathodal, and bipolar stimulation. Circ Res 1956;4:196–203

    Google Scholar 

  19. Cranefield PF, Hoffman BF, Siebens AA. Anodal excitation of cardiac muscle. Am J Physiol 1957;190:383–390

    PubMed  CAS  Google Scholar 

  20. Sidorov VY, Woods MC, Baudenbacher P, Baudenbacher F. Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am J Physiol 2005;289:H2602–H2615

    CAS  Google Scholar 

  21. Roth BJ. A mechanism for the “no-response” phenomenon during anodal stimulation of cardiac tissue. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, Oct. 30–Nov. 2, 1997

    Google Scholar 

  22. Cheng Y, Mowrey KA, van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res 1999;85:1056–1066

    PubMed  CAS  Google Scholar 

  23. Rodriguez B, Trayanova N. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles. J Electrocardiol 2003;36(Suppl):51–56

    Article  PubMed  Google Scholar 

  24. Roth BJ, Patel SG. Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J Cardiovasc Electrophysiol 2003;14:1351–1355

    Article  PubMed  Google Scholar 

  25. Sidorov VY, Woods MC, Wikswo JP. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue. Biophys J 2003;84:3470–3479

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez B, Tice BM, Eason JC, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Heart Rhythm 2004;1:695–703

    Article  PubMed  Google Scholar 

  27. Mehra R, McMullen M, Furman S. Time dependence of unipolar cathodal and anodal strength-interval curves. PACE 1980;3:526–530

    PubMed  CAS  Google Scholar 

  28. Bennett JA, Roth BJ. Time dependence of anodal and cathodal refractory periods in cardiac tissue. PACE 1999;22:1031–1038

    PubMed  CAS  Google Scholar 

  29. Janks DL, Roth BJ. Quatrefoil reentry caused by burst pacing. J Cardiovasc Electro-physiol 2006;17:1362–1368

    Article  Google Scholar 

  30. Saypol JM, Roth BJ. A mechanism for anisotropic reentry in electrically active tissue. J Cardiovasc Electrophysiol 1992;3:558–566

    Google Scholar 

  31. Lin S-F, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol 1999;10:574–586

    Article  PubMed  CAS  Google Scholar 

  32. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and de-excitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 2000;11:339–353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Janks, D.L., Roth, B.J. (2009). The Bidomain Theory of Pacing. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics