Ventricular Fibrillation: A Historical Perspective

  • Galina Kichigina
  • José Jalife

This chapter explores some scientific and technological aspects of the emergence of modern cardiology in the late nineteenth century that were important to the formation of cardiac electrophysiology, which rose into prominence in the 1940s–1950s. The chapter features the historical growth of ideas, concepts and understanding of ventricular fibrillation (VF) as a distinct clinical condition among the disturbances of the heart's rhythm.

To describe the ideas, concepts, and technical methods that led to modern understanding of VF, we shall touch on some of the important developments in cardiovascular physiology and instrumentation, which were to reshape the clinical conception of cardiac arrhythmias. Much of this work took place in continental Europe, most notably in the laboratories of Carl Ludwig in Leipzig and of Étienne Jules Marey in Paris. At the end of the nineteenth century much of the physiological research that became essential to modern conceptions of arrhythmias concentrated on the problem of the heart's rhythmic activity. There also appeared a number of anatomical and histological studies crucial for the deeper understanding of the specialized cardiac conduction system. The fundamental physiological concepts of the heart action were also paralleled by transformations in clinical medicine. Clinicians began to focus their attention specifically on heart rhythm disorders, drawing extensively on physiological work on rhythmicity and using instruments adapted or devised for this particular purpose. A watershed event occurred in the early twentieth century, when a new and promising approach for recording the heart's action through its electrical activity was set forth by Willem Einthoven in Leiden and Thomas Lewis in London. It was during these years that most of the cardiac arrhythmias were described, the electrocardiographic basis of atrial fibrillation (AF) was established, and AF and VF were clearly distinguished.


Ventricular Fibrillation Mitral Valve Disease Cardiac Electrophysiology Circus Movement Reentrant Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    Wiggers C. Some significant advances in cardiac physiology during the nineteenth century, Hist Med 1960;34:1–15Google Scholar
  2. 2.
    Breasted JH. The Edwin Smith Surgical Papyrus, 2 vols, v.1. Chicago: University of Chicago Press; 1930:105Google Scholar
  3. 3.
    Lawrence C. Moderns and ancients: the “new cardiology” in Britain 1880–1930. In Bynum W, Lawrence C, Nutton V, eds. The Emergence of Modern Cardiology. London: Wellcome Institute for the History of Medicine; 1985:1–33Google Scholar
  4. 4.
    Conrad L, Neve M, Nutton V, eds. The Western Medical Tradition 800 BC to AD 1800. Cambridge, UK: Cambridge University Press; 1995:3–7Google Scholar
  5. 5.
    Vierordt H. Geschichte der Herzkrankheiten. In Puschmann T. Handbuch der Geschichte der Medizin, 2 vols, v.2. Jena: Gustav Fisher; 1903:631–647. Horine EF. An epitome of ancient pulse lore, Bull Hist Med 1941;10:209–249Google Scholar
  6. 6.
    Galen C. On the Affected Parts. In Harris CR. The Heart and the Vascular System in Ancient Greek Medicine. Oxford, UK: Clarendon; 1973:448Google Scholar
  7. 7.
    Aurelianus C. De morbis acutis, In Harris CR, The Heart and the Vascular System in Ancient Greek Medicine. Oxford, UK: Clarendon Press; 1973:437Google Scholar
  8. 8.
    In his famous treatise on the structure, function and diseases of the heart Jean-Baptiste de Sénac (1693–1770) gave accurate description of the ‘rebellious palpitation’, which he correlated with post mortem findings of mitral valve disease and dilatation of the left ventricle. Sénac JB. Tra i té de la structure du coeur, de son action et ses maladies,2 vols, v. 1. Paris: J. Vincent; 1749:524Google Scholar
  9. 9.
    Corvisart JN. Essai sur les maladies et les lesions organiques du coeur et des gros vaisseux. Paris, 1818; idem., Nouveau method pour reconnâitre les maladies internes de la poitrine, Paris, 1808; Bouillaud JB. Tra i té clinique des maladies du couer, 2 vols,Paris: JB Bailliére; 1835Google Scholar
  10. 10.
    Osler W. The Principles and Practice of Medicine. New York: D. Appleton; 1892:592–662Google Scholar
  11. 11.
    Lawrence, op. cit. (note 3), p. 6Google Scholar
  12. 12.
    Hager M. Scientific Medicine. In Cahan D, ed. From Natural Philosophy to the Sciences:Writing the History of Nineteenth-Century Science. Chicago: Chicago University Press;2003:49–87Google Scholar
  13. 13.
    Colemann W. The cognitive basis of the discipline Claude Bernard on Physiology. Isis 1985;76:49–70CrossRefGoogle Scholar
  14. 14.
    Vierord K. Die Lehre vom Arterienpuls in gesunden und kranken Zustnden. Gegründed auf eine neue Methode der bildlichen Darstellung des menschlichen Pulses Braunschweig: Vieweg and Sohn; 1855:4–12Google Scholar
  15. 15.
    Marey JE. Physiologie médicale de la circulation du sang. Paris: Delahaye; 1863. Marey is credited with the discovery of the refractory period of the heart muscle in 1875.On Marey and his studies on the heart with capillary electrometer, see R. Frank. The telltale heart: physiological instruments, graphic methods, and clinical hopes, 1854–1914. In Coleman W, Holmes F. The Investigative Enterprise Experimental Physiology in Nineteenth-Century Medicine. Berkeley: University of California Press; 1988:211–290Google Scholar
  16. 16.
    Kölliker A, Müller H, Nachweis der negative Schwankung des Muskelstroms am natürlich sich kontrahierenden Muskel. Verhandl Phys Med Gesellsch 1856;6:528–533Google Scholar
  17. 17.
    Lenoir T, Models and instruments in the development of electrophysiology, 1845–1912. In Historical Studies in the Physical and Biological Sciences. Los Angeles: University of California Press; 1986:1–54Google Scholar
  18. 18.
    Engelmann Th.W. Uber das elektrische Verhalten des thätigen Herzens. Pflügers Archiv f ür gesamte Physiologie des Menschen und der Tiere 1878;17:68–99. Rothschuh KE.Theodor Wilhelm Engelmann. Dictionary of Scientific Biography, vol. 4, 1970:371–373. Meijler FL, ed. Th. W. Engelmann, Professor of Physiology, Utrecht(1889–1897).Amsterdam: Rodopi; 1984CrossRefGoogle Scholar
  19. 19.
    Hopley IB, Lippmann GJ. In Dictionary of Scientific Biography, vol. 8, 387–388. Frank,op. cit. (note 15)Google Scholar
  20. 20.
    Waller A. A demonstration on man of electromotive changes accompanying the heart's beat. J Physiol 1887;8:229–234PubMedGoogle Scholar
  21. 21.
    Lewis T. The interpretation of the primary and first secondary wave in sphygmograph tracings. J Anat Lond 1907;1:137–140Google Scholar
  22. 22.
    Cushny AR, Edmunds CW. Paroxysmal irregularity of the heart and auricular fibrillation. In Bulloch W, ed. Studies in Pathology. Scotland: Aberdeen; 1906:95–110Google Scholar
  23. 23.
    Burnett J. The origins of the electrocardiograph as a clinical instrument. In Bynum WF,Lawrence C, Nutton V, eds. The Emergence of Modern Cardiology. London: Wellcome Institute for the History of Medicine; 1985:53–76Google Scholar
  24. 24.
    Hering HE. Das Electrokardiogram des Pulsus irregularis perpetuus. Dtsch Arch klin Med 1908;94:205–208Google Scholar
  25. 25.
    Rothberger CJ, Winterberg H. Vorhofflimmern und Arhythmia perpetua. Wien klin Wchnschr 1909;22:839–844Google Scholar
  26. 26.
    Lewis T. Observations upon disorders of the heart's action. Heart 1912;3:279–300. Some aspects on Lewis'ls studies of arrhythmia are mentioned in Krickler D. The development of the understanding of arrhythmias during the last 100 years. In Bynum et al., eds.Emergence of Modern Cardiology, op. cit. (note 23), pp. 77–81Google Scholar
  27. 27.
    Hoffa M, Ludwig C. Einige neue Versuche über Herzbewegung. Z rationewlle Med 1850;9:107–144. Schröer H, Carl Ludwig. Begründer der messenden Experimental-physiologie 1816–1895. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1967:67–71Google Scholar
  28. 28.
    Vulpian EFA. Notes sur les éffets de la faradisation directe des ventricules du coeur chez le chien. Arch Physiol Norm Path 1874;6:975–982. Vulpian was basically a neurophysi-ologist and together with his collaborator Jean-Martin Charcot exerted great influences on nineteenth-century French medicine. Together with Charcot, Vulpian founded the journal Archives de physiologie normale et pathologique in 1868Google Scholar
  29. 29.
    Sée G. Du diagnostic et du traitement des maladies du coeur et en particulier de leurs formes anomales. Paris: JB Bailliére; 1879Google Scholar
  30. 30.
    On Bernard's endocardial reflex in support of neurogenicity, see W. Rutherford, Lectures on Experimental Physiology. Lancet 1871;2:841. On Vulpian' acceptance of neurogenic theory, see Vulpian FA. Leçons sur l'appareil vasomoteur (physiologie et pathologie),Carville HC, ed., 2 vols, Paris: JB Bailliére; 1875:v. 1, 321–322. On myogenic-neurogenic debate, see Geison G. Michael Foster and the Cambridge School of Physiology. Princeton, NJ: Princeton University Press; 1978:342–347Google Scholar
  31. 31.
    On Gaskel and his research, see Geison, op. cit. (note 30), pp. 247–252; 280–289Google Scholar
  32. 32.
    On the acceptance of the myogenic theory by German physiologists, see His W Jr. A story of the atrioventricular bundle with remarks concerning embryonic heart activity.J Hist Med 1949; 4:319–333Google Scholar
  33. 33.
    Cushny AR. On the interpretation of pulse-tracing. J Exp Med 1899; 4:327–347CrossRefPubMedGoogle Scholar
  34. 34.
    MacWilliam JA. Fibrillar contraction of the heart. J Exp Physiol 1887; 8:296–310Google Scholar
  35. 35.
    MacWilliam JA. Cardiac failure and sudden death. Br Med J 1889; 1:6Google Scholar
  36. 36.
    MacWilliam JA. Fibrillar contraction of the heart. J Physiol 1887; 8:296–310Google Scholar
  37. 37.
    MacWilliam JA. On the rhythm of the mammalian heart. Proc R Soc Lond 1888; 44:206CrossRefGoogle Scholar
  38. 38.
    Ziemssen H. Studien über die Bewegungsvorgänge am menschlichen Herzen, sowie über die mechanische und elektrische Erregbarkeit des Herzens und des Nervus Phrenicus,angestelt an dem freiligenden Herzen der Catharina Serafin. Dtsch Arch clin Med 1882; 30:270; MacWilliam JA, Electrical stimulation of the heart in man. Br Med J 1889; 348Google Scholar
  39. 39.
    Lewis T. Lectures on the Heart. New York: Paul B. Hoeber; 1915Google Scholar
  40. 40.
    Levy AG, Lewis T. Heart irregularities, resulting from the inhalation of low percentages of chloroform vapour, and their relationship to ventricular fibrillation. Heart 1911;33:99–112Google Scholar
  41. 41.
    Hoffmann A, Fibrillation of the ventricles at the end of an attack of paroxysmal tachycardia in man. Heart 1912; 3:213–218Google Scholar
  42. 42.
    Robinson GC. A study with electrocardiograph of the mode of death of the human heart. J Exp Med 1912; 16:291–302. Robinson GC, Bredeck JF, Ventricular fibrillation in man with cardiac recovery. Arch Int Med 1917; 20:725–738CrossRefPubMedGoogle Scholar
  43. 43.
    Lewis T. Lectures on the Heart. New York: Paul B. Hoeber; 1915Google Scholar
  44. 44.
    Kronecker H, Schmey F, Das Coordinationscentrum der Herzkammerbewegung,Berliner Klinische Wochenschrift 1884; 21:738–739. Kronecker improved the proofs for the all-or none law applied for the heart in 1873, worked out the method of the isolated heart, and almost simultaneously with Marey described the refractory period of the heart in 1874. A device for measuring the pressure of the isolated heart is named after him. Rothschuh K in Gillispie Ch, ed. Dictionary of Scientific Biography. New York:Scribner; 1970–1980:504–505Google Scholar
  45. 45.
    Engelmann TW, Über den Einfluss der Systole auf der motorische Leitung in der Herzkammer, mit Bemerkungen zur Theorie allorhythmischer Herzstorungen. Arch ges Physiol 1896;62:543–566CrossRefGoogle Scholar
  46. 46.
    Winterberg H. Ueber Herzflimmern und seine Beeinflussung durch Kampher, Zeitschrift f experimentalle Pathologie und Therapie 1906;3:182–208CrossRefGoogle Scholar
  47. 47.
    Lewis T, Schleiter HG. The relation of regular tachycardias of auricular origin to auricular fibrillation. Heart 1912;3:173–193Google Scholar
  48. 48.
    Rothberger CJ, Winterberg H. Der Vorhofflimmern und Vorhofflattern. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 1915;160:42–90CrossRefGoogle Scholar
  49. 49.
    Mines GR. On dynamic equilibrium in the heart. J Phyiol 1913;46:349–383. DeSilva RA, Mines GR. Ventricular fibrillation and the discovery of the vulnerable period. J Am Coll Cardiol 1997; 29:1397–1402Google Scholar
  50. 50.
    Lewis T, Schleiter HG. The relation of regular tachycardias of auricular origin to auricular fibrillation. Heart 1912; 3:173–193Google Scholar
  51. 51.
    Mayer AG. Rhythmical Pulsation in Scyphomedusae, vol. 47. Washington DC: Carnegie Institute of Washington; 1906:1–62Google Scholar
  52. 52.
    Mines GR. On circulating excitation in heart muscle and their possible relations to tachycardia and fibrillation. Proc Trans R Soc Canada 1914; 8:43–52Google Scholar
  53. 53.
    Mines. 1913, op. cit. (note 49)Google Scholar
  54. 54.
    Garrey WE. The nature of fibrillatory contractions of the heart: its relation to tissue mass and form. Am J Physiol 1914;33:397–414Google Scholar
  55. 55.
    Weiner N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle.Arch Inst Cardiol Mex 1946;16:205–265Google Scholar
  56. 56.
    Davidenko J, Pertsov A, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 1991;355:349–351CrossRefGoogle Scholar
  57. 57.
    Rothberger CJ. Neue Theorien über Flimmern und Flattern. Wien Klinische Wochen-schrift 1922;1:82–87; idem., Bemerkungen zur Theorie der Kreisbewegung beim Flim-mern', Wien Klinische Wochenschrift 1923; 2:1407–1409Google Scholar
  58. 58.
    Garrey WE. Auricular fibrillation. Physiol Rev 1924;4:215–250Google Scholar
  59. 59.
    Wiggers CJ. Studies on ventricular fibrillation produced by electric shock. II. Cinematographic and Electrocardiographic observations of the natural process in the dog's heart.Am Heart J 1930;5:351–365CrossRefGoogle Scholar
  60. 60.
    Wiggers CJ. The mechanism and nature of ventricular fibrillation. Am Heart J 1940;20:399–412CrossRefGoogle Scholar
  61. 61.
    Wiggers CJ. Fibrillation. Am Heart J 1940;20:399–422CrossRefGoogle Scholar
  62. 62.
    Scherf D, Schott A. Extrasystoles and Allied Arrhythmias. New York: Grune and Stratton; 1953Google Scholar
  63. 63.
    Moe GK. Introductory remarks to part III of experimental methods for the evaluation of drugs in various disease states. Ann NY Acad Sci1956;64:540–542PubMedCrossRefGoogle Scholar
  64. 64.
    Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J 1959;58:59–70PubMedCrossRefGoogle Scholar
  65. 65.
    Moe GK. On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn 1962;CXL:183–188Google Scholar
  66. 66.
    Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res1964;14:44–60PubMedGoogle Scholar
  67. 67.
    Moe GK, Rheinbolt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J 1964;67:200–220PubMedCrossRefGoogle Scholar
  68. 68.
    Allessie MA, Lammers WEJEP, Bonke FIM, Hollen J. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. Orlando, FL: Grune and Stratton; 1985:265–275Google Scholar
  69. 69.
    Downar E, Harris L, Mickelbrough LL, Shaigh N, Parson I. Endocardial mapping of ven-tricular tachycardia in the intact human ventricle: evidence for reentrant mechanisms J Am Col Cardiol 1988;11:703–714CrossRefGoogle Scholar
  70. 70.
    Janse MJ, Wilms-Schopman FJG, Coronel R. Ventricular fibrillation is not always due to multiple wavelet reentry. J Cardiovasc Electrophysiol 1995;6:512–521PubMedCrossRefGoogle Scholar
  71. 71.
    Witkowski FX, Leon LJ, Penkoske PA, Giles WR, Spano ML, et al. Spatiotemporal evolution of ventricular fibrillation. Nature 1998;392:78–82PubMedCrossRefGoogle Scholar
  72. 72.
    Epstein AE, Ideker RE. Ventricular fibrillation. In Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd edn. Philadelphia: Saunders; 1995:927–933Google Scholar
  73. 73.
    Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, et al. Mechanisms of cardiac fibrillation. Science 1995;270:1222–1225PubMedCrossRefGoogle Scholar
  74. 74.
    Jalife J, Gray RA. Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart. Acta Physiol Scand 1996;157:123–131PubMedCrossRefGoogle Scholar
  75. 75.
    Jalife J, Gray RA, Morley GE, Davidenko JM. Self-organization and the dynamical nature of ventricular fibrillation. Chaos 1998;8:79–93PubMedCrossRefGoogle Scholar
  76. 76.
    Allessie MA, Bonke FIM, Schopman FJC. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res 1973;33:54–62PubMedGoogle Scholar
  77. 77.
    Allessie MA, Bonke FIM, Schopman FJC. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block as studied with multiple microelectrodes. Circ Res 1976;39:168–177PubMedGoogle Scholar
  78. 78.
    Allessie MA, Bonke FIM, Schopman FJC. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 1977;41:9–18PubMedGoogle Scholar
  79. 79.
    Belousov BP. A periodic reaction and its mechanism. Compilation Abstr Radiat Med1959;147:145Google Scholar
  80. 80.
    Zhabotinsky AM. Periodic processes of malonic acid oxidation in a liquid phase. Biofizika 1964;9:306–311Google Scholar
  81. 81.
    Gul'ko FB, Petrov AA. Mechanism of the formation of closed pathways of conduction in excitable media. Biophysics 1972;17:271–281Google Scholar
  82. 82.
    Krinsky VI. Mathematical models of cardiac arrhythmias (spiral waves). Pharmacol Ther B 1978;3:539–355PubMedGoogle Scholar
  83. 83.
    Winfree AT. When Time Breaks Down. Princeton, NJ: Princeton University Press, 1987Google Scholar
  84. 84.
    Winfree AT, Strogatz SH. Organizing centres for three-dimensional chemical waves.Nature 1984;311:611–615PubMedCrossRefGoogle Scholar
  85. 85.
    Winfree AT. Electrical turbulence in three-dimensional heart muscle. Science 1994;266:1003–1006PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Galina Kichigina
    • 1
  • José Jalife
    • 2
  1. 1.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Internal Medicine, Center for Arrhythmia ResearchUniversity of MichiganAnn Arbor

Personalised recommendations